Small-angle neutron scattering and contrast variation: a powerful combination for studying biological structures.

Center for Structural Molecular Biology and Chemical Sciences Division, Oak Ridge National Laboratory, PO Box 2008, MS-6393, Oak Ridge, TN 37831, USA.
Acta Crystallographica Section D Biological Crystallography (Impact Factor: 12.67). 11/2010; 66(Pt 11):1213-7. DOI: 10.1107/S0907444910017658
Source: PubMed

ABSTRACT The use of small-angle scattering (SAS) in the biological sciences continues to increase, driven as much by the need to study increasingly complex systems that are often resistant to crystallization or are too large for NMR as by the availability of user facilities and advancements in the modelling of biological structures from SAS data. SAS, whether with neutrons (SANS) or X-rays (SAXS), is a structural probe of length scales ranging from 10 to 10,000 Å. When applied to biological complexes in dilute solution, it provides size and shape information that can be used to produce structural models that can provide insight into function. SANS enables the use of contrast-variation methods through the unique interaction of neutrons with hydrogen and its isotope deuterium. SANS with contrast variation enables the visualization of components within multisubunit complexes, making it a powerful tool for probing protein-protein and protein-nucleic acid complexes, as well as the interaction of proteins with lipids and detergents.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Red clover necrotic mosaic virus (RCNMV) is a 36-nm-diameter, T = 3 icosahedral plant virus with a genome that is split between two single-stranded RNA molecules of approximately 3.9 kb and 1.5 kb, as well as a 400-nucleotide degradation product. The structure of the virus capsid and its response to removing Ca2+ and Mg2+ was previously studied by cryo-electron microscopy (cryo-EM) (Sherman et al. J Virol 80:10395-10406, 2006) but the structure of the RNA was only partially resolved in that study. To better understand the organization of the RNA and conformational changes resulting from the removal of divalent cations, small-angle neutron scattering with contrast variation experiments were performed. The results expand upon the cryo-EM results by clearly showing that virtually all of the RNA is contained in a thin shell that is in contact with the interior domains of the viral capsid protein, and they provide new insight into changes in the RNA packing that result from removal of divalent cations.
    Archives of Virology 03/2013; · 2.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Small-angle neutron scattering was used to study the effects of macromolecular crowding by two globular proteins, i.e., bovine pancreatic trypsin inhibitor and equine metmyoglobin, on the conformational ensemble of an intrinsically disordered protein, the N protein of bacteriophage λ. The λ N protein was uniformly labeled with (2)H, and the concentrations of D2O in the samples were adjusted to match the neutron scattering contrast of the unlabeled crowding proteins, thereby masking their contribution to the scattering profiles. Scattering from the deuterated λ N was recorded for samples containing up to 0.12 g/mL bovine pancreatic trypsin inhibitor or 0.2 g/mL metmyoglobin. The radius of gyration of the uncrowded protein was estimated to be 30 Å and was found to be remarkably insensitive to the presence of crowders, varying by <2 Å for the highest crowder concentrations. The scattering profiles were also used to estimate the fractal dimension of λ N, which was found to be ∼1.8 in the absence or presence of crowders, indicative of a well-solvated and expanded random coil under all of the conditions examined. These results are contrary to the predictions of theoretical treatments and previous experimental studies demonstrating compaction of unfolded proteins by crowding with polymers such as dextran and Ficoll. A computational simulation suggests that some previous treatments may have overestimated the effective volumes of disordered proteins and the variation of these volumes within an ensemble. The apparent insensitivity of λ N to crowding may also be due in part to weak attractive interactions with the crowding proteins, which may compensate for the effects of steric exclusion.
    Biophysical Journal 02/2014; 106(4):905-14. · 3.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nutrient import across Gram-negative bacteria's outer membrane is powered by the proton-motive force, delivered by the cytoplasmic membrane protein complex ExbB-ExbD-TonB. Having purified the ExbB4-ExbD2 complex in the detergent dodecyl maltoside, we substituted amphipol A8-35 for detergent, forming a water-soluble membrane protein/amphipol complex. Properties of the ExbB4-ExbD2 complex in detergent or in amphipols were compared by gel electrophoresis, size exclusion chromatography, asymmetric flow field-flow fractionation, thermal stability assays, and electron microscopy. Bound detergent and fluorescently labeled amphipol were assayed quantitatively by 1D NMR and analytical ultracentrifugation, respectively. The structural arrangement of ExbB4-ExbD2 was examined by EM, small-angle X-ray scattering, and small-angle neutron scattering using a deuterated amphipol. The amphipol-trapped ExbB4-ExbD2 complex is slightly larger than its detergent-solubilized counterpart. We also investigated a different oligomeric form of the two proteins, ExbB6-ExbD4, and propose a structural arrangement of its transmembrane α-helical domains.
    Journal of Membrane Biology 05/2014; · 2.48 Impact Factor