Small-angle neutron scattering and contrast variation: A powerful combination for studying biological structures

Center for Structural Molecular Biology and Chemical Sciences Division, Oak Ridge National Laboratory, PO Box 2008, MS-6393, Oak Ridge, TN 37831, USA.
Acta Crystallographica Section D Biological Crystallography (Impact Factor: 2.67). 11/2010; 66(Pt 11):1213-7. DOI: 10.1107/S0907444910017658
Source: PubMed


The use of small-angle scattering (SAS) in the biological sciences continues to increase, driven as much by the need to study increasingly complex systems that are often resistant to crystallization or are too large for NMR as by the availability of user facilities and advancements in the modelling of biological structures from SAS data. SAS, whether with neutrons (SANS) or X-rays (SAXS), is a structural probe of length scales ranging from 10 to 10,000 Å. When applied to biological complexes in dilute solution, it provides size and shape information that can be used to produce structural models that can provide insight into function. SANS enables the use of contrast-variation methods through the unique interaction of neutrons with hydrogen and its isotope deuterium. SANS with contrast variation enables the visualization of components within multisubunit complexes, making it a powerful tool for probing protein-protein and protein-nucleic acid complexes, as well as the interaction of proteins with lipids and detergents.

1 Follower
14 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the present study, we determined characteristic repeat distances of the photosynthetic membranes in living cyanobacterial and eukaryotic algal cells, and in intact thylakoid membranes isolated from higher plants with time-resolved small-angle neutron scattering. This non-invasive technique reveals light-induced reversible reorganizations in the seconds-to-minutes time scale, which appear to be associated with functional changes in vivo.
    Biochemical Journal 06/2011; 436(2):225-30. DOI:10.1042/BJ20110180 · 4.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The SLC26/SulP (solute carrier/sulfate transporter) proteins are a superfamily of anion transporters conserved from bacteria to man, of which four have been identified in human diseases. Proteins within the SLC26/SulP family exhibit a wide variety of functions, transporting anions from halides to carboxylic acids. The proteins comprise a transmembrane domain containing between 10-12 transmembrane helices followed a by C-terminal cytoplasmic sulfate transporter and anti-sigma factor antagonist (STAS) domain. These proteins are expected to undergo conformational changes during the transport cycle; however, structural information for this family remains sparse, particularly for the full-length proteins. To address this issue, we conducted an expression and detergent screen on bacterial Slc26 proteins. The screen identified a Yersinia enterocolitica Slc26A protein as the ideal candidate for further structural studies as it can be purified to homogeneity. Partial proteolysis, co-purification, and analytical size exclusion chromatography demonstrate that the protein purifies as stable oligomers. Using small angle neutron scattering combined with contrast variation, we have determined the first low resolution structure of a bacterial Slc26 protein without spectral contribution from the detergent. The structure confirms that the protein forms a dimer stabilized via its transmembrane core; the cytoplasmic STAS domain projects away from the transmembrane domain and is not involved in dimerization. Supported by additional biochemical data, the structure suggests that large movements of the STAS domain underlie the conformational changes that occur during transport.
    Journal of Biological Chemistry 06/2011; 286(30):27058-67. DOI:10.1074/jbc.M111.244533 · 4.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A simple and rapid procedure is presented that enables evaluation and visualization of refinement efficiency for bio-macromolecular complexes consisting of two subunits in a given orientation by using small-angle scattering. Subunit orientations within a complex can be provided in practice by NMR residual dipolar couplings, an approach that has been combined with increasing success to complement small-angle data. The procedure is illustrated by applying it to several systems composed of two simple geometric bodies (ellipsoids) and to protein complexes from the protein data bank that vary in subunit size and anisometry. The effects of the experimental small-angle scattering range (Q-range) and data noise level on the refinement efficiency are investigated and discussed. The procedure can be used in two ways: (1) either as a quick preliminary test to probe the refinement capacity expected for a given bio-macromolecular complex prior to sophisticated and time-consuming experiments and data analysis, or (2) as an a posteriori check of the stability and accuracy of a refined model and for illustration of the residual degrees of freedom of the subunit positions that are in agreement with both small-angle data and restraints on subunit orientation (as provided, e.g., by NMR).
    Biophysics of Structure and Mechanism 09/2011; 41(1):1-11. DOI:10.1007/s00249-011-0751-y · 2.22 Impact Factor
Show more