The C. elegans homolog of Drosophila Lethal giant larvae functions redundantly with PAR-2 to maintain polarity in the early embryo.

Department of Molecular Biology and Genetics, Cornell University, 433 Biotechnology Building, Ithaca, NY 14850, USA.
Development (Impact Factor: 6.6). 11/2010; 137(23):3995-4004. DOI: 10.1242/dev.056028
Source: PubMed

ABSTRACT Polarity is essential for generating cell diversity. The one-cell C. elegans embryo serves as a model for studying the establishment and maintenance of polarity. In the early embryo, a myosin II-dependent contraction of the cortical meshwork asymmetrically distributes the highly conserved PDZ proteins PAR-3 and PAR-6, as well as an atypical protein kinase C (PKC-3), to the anterior. The RING-finger protein PAR-2 becomes enriched on the posterior cortex and prevents these three proteins from returning to the posterior. In addition to the PAR proteins, other proteins are required for polarity in many metazoans. One example is the conserved Drosophila tumor-suppressor protein Lethal giant larvae (Lgl). In Drosophila and mammals, Lgl contributes to the maintenance of cell polarity and plays a role in asymmetric cell division. We have found that the C. elegans homolog of Lgl, LGL-1, has a role in polarity but is not essential. It localizes asymmetrically to the posterior of the early embryo in a PKC-3-dependent manner, and functions redundantly with PAR-2 to maintain polarity. Furthermore, overexpression of LGL-1 is sufficient to rescue loss of PAR-2 function. LGL-1 negatively regulates the accumulation of myosin (NMY-2) on the posterior cortex, representing a possible mechanism by which LGL-1 might contribute to polarity maintenance.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The par genes of Caenorhabditis elegans are essential for establishment and maintenance of early embryo polarity and their homologs in other organisms are crucial polarity regulators in diverse cell types. Forward genetic screens and simple RNAi depletion screens have identified additional conserved regulators of polarity in C. elegans; genes with redundant functions, however, will be missed by these approaches. To identify such genes, we have performed a genome-wide RNAi screen for enhancers of lethality in conditional par-1 and par-4 mutants. We have identified eighteen genes for which depletion is synthetically lethal with par-1 or par-4, or both, but produces little embryo lethality in wild type. Fifteen of the eighteen genes identified in our screen are not previously known to function in C. elegans embryo polarity and eleven of them also increase lethality in a par-2 mutant. Among the strongest synthetic lethal genes, polarity defects are more apparent in par-2 early embryos than in par-1 or par-4, except for strd- 1(RNAi), which enhances early polarity phenotypes in all three mutants. One strong enhancer of par-1 and par-2 lethality, F25B5.2, corresponds to nop-1, a regulator of actomyosin contractility for which the molecular identity was previously unknown. Other putative polarity enhancers identified in our screen encode cytoskeletal and membrane proteins, kinases, chaperones, and sumoylation and deubiquitylation proteins. Further studies of these genes should give mechanistic insight into pathways regulating establishment and maintenance of cell polarity.
    Genetics 08/2012; · 4.39 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A hallmark of cell polarity in metazoans is the distribution of partitioning defective (PAR) proteins into two domains on the membrane. Domain boundaries are set by the collective integration of mechanical, biochemical and biophysical signals, and the resulting PAR domains define areas of cytosol specialization. However, the complexity of the signals acting on PAR proteins has been a barrier to uncovering the general principles of PAR polarity. We propose that physical studies, when combined with genetic data, provide new understanding of the mechanisms of polarity establishment in the Caenorhabditis elegans embryo and other organisms.
    Nature Reviews Molecular Cell Biology 04/2013; · 37.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Polarization of cells by PAR proteins requires the segregation of antagonistic sets of proteins into two mutually exclusive membrane-associated domains. Understanding how nanometer scale interactions between individual PAR proteins allow spatial organization across cellular length scales requires determining the kinetic properties of PAR proteins and how they are modified in space. We find that PAR-2 and PAR-6, which localize to opposing PAR domains, undergo exchange between well mixed cytoplasmic populations and laterally diffusing membrane-associated states. Domain maintenance does not involve diffusion barriers, lateral sorting, or active transport. Rather, both PAR proteins are free to diffuse between domains, giving rise to a continuous boundary flux because of lateral diffusion of molecules down the concentration gradients that exist across the embryo. Our results suggest that the equalizing effects of lateral diffusion are countered by actin-independent differences in the effective membrane affinities of PAR proteins between the two domains, which likely depend on the ability of each PAR species to locally modulate the membrane affinity of opposing PAR species within its domain. We propose that the stably polarized embryo reflects a dynamic steady state in which molecules undergo continuous diffusion between regions of net association and dissociation.
    The Journal of Cell Biology 05/2011; 193(3):583-94. · 10.82 Impact Factor