Thrombin-dependent NF-{kappa}B activation and monocyte/endothelial adhesion are mediated by the CARMA3·Bcl10·MALT1 signalosome.

Cellular and Molecular Biology Graduate Program, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA.
Journal of Biological Chemistry (Impact Factor: 4.6). 11/2010; 285(53):41432-42. DOI: 10.1074/jbc.M110.158949
Source: PubMed

ABSTRACT Thrombin is a potent modulator of endothelial function and, through stimulation of NF-κB, induces endothelial expression of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). These cell surface adhesion molecules recruit inflammatory cells to the vessel wall and thereby participate in the development of atherosclerosis, which is increasingly recognized as an inflammatory condition. The principal receptor for thrombin on endothelial cells is protease-activated receptor-1 (PAR-1), a member of the G protein-coupled receptor superfamily. Although it is known that PAR-1 signaling to NF-κB depends on initial PKC activation, the subsequent steps leading to stimulation of the canonical NF-κB machinery have remained unclear. Here, we demonstrate that a complex of proteins containing CARMA3, Bcl10, and MALT1 links PAR-1 activation to stimulation of the IκB kinase complex. IκB kinase in turn phosphorylates IκB, leading to its degradation and the release of active NF-κB. Further, we find that although this CARMA3·Bcl10·MALT1 signalosome shares features with a CARMA1-containing signalosome found in lymphocytes, there are significant differences in how the signalosomes communicate with their cognate receptors. Specifically, whereas the CARMA1-containing lymphocyte complex relies on 3-phosphoinositide-dependent protein kinase 1 for assembly and activation, the CARMA3-containing endothelial signalosome functions completely independent of 3-phosphoinositide-dependent protein kinase 1 and instead relies on β-arrestin 2 for assembly. Finally, we show that thrombin-dependent adhesion of monocytes to endothelial cells requires an intact endothelial CARMA3·Bcl10·MALT1 signalosome, underscoring the importance of the signalosome in mediating one of the most significant pro-atherogenic effects of thrombin.

  • Source
    Atherogenesis, 01/2012; , ISBN: 978-953-307-992-9
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tissue factor pathway inhibitor (TFPI) is the primary inhibitor of the extrinsic coagulation cascade and its expression is reported to be relatively stable. Various pathophysiologic agents have been shown to influence TFPI activity either by regulating its expression or modifying the protein. It is not clear how TFPI activity is regulated in normal physiology or in injury. Because thrombin and TFPI are both locally elaborated in pleural injury, we sought to determine if thrombin could regulate TFPI in human pleural mesothelial cells (HPMCs). Thrombin significantly decreased TFPI mRNA and protein levels by greater than 70%. Further, thrombin-mediated down-regulation of TFPI promoted factor X activation by HPMCs. The ability of thrombin to significantly decrease TFPI mRNA and protein levels was maintained at nanomolar concentrations. Protease activated receptor (PAR)-1, a mediator of thrombin signaling, is detectable in the mesothelium in human and murine pleural injury. PAR-1 silencing blocked thrombin-mediated decrements of TFPI in HPMCs. Thrombin activates PI3K/Akt and NFκB signaling in HPMCs. Inhibition of PI3K (by PX-866) and NFκB (by SN50) prevented thrombin-mediated TFPI mRNA and protein down-regulation. These are the first studies to demonstrate that thrombin decreases TFPI expression in HPMCs. Our findings demonstrate a novel mechanism by which thrombin regulates TFPI expression in PMCs and promotes an unrestricted procoagulant response. Further, they suggest that interactions between PI3K and NFκB signaling pathways are linked in HPMCs and control TFPI expression. These findings raise the possibility that targeting of this pathway could limit the ability of the mesothelium to support extravascular fibrin deposition and organization associated with pleural injury.
    American Journal of Respiratory Cell and Molecular Biology 10/2014; DOI:10.1165/rcmb.2014-0084OC · 4.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Countless in vitro cell culture models based on the use of epithelial cell types of single lineages have been characterized and have provided insight into the mechanisms of infection for various microbial pathogens. Diverse culture models based on disease-relevant mucosal epithelial cell types derived from gastrointestinal, genitourinary, and pulmonary organ systems have delineated many key host-pathogen interactions that underlie viral, parasitic, and bacterial disease pathogenesis. An alternative to single lineage epithelial cell monoculture, which offers more flexibility and can overcome some of the limitations of epithelial cell culture models based on only single cell types, is coculture of epithelial cells with other host cell types. Various coculture models have been described, which incorporate epithelial cell types in culture combination with a wide range of other cell types including neutrophils, eosinophils, monocytes, and lymphocytes. This paper will summarize current models of epithelial cell coculture and will discuss the benefits and limitations of epithelial cell coculture for studying host-pathogen dynamics in infectious diseases.
    BioMed Research International 10/2011; 2011(1110-7243):852419. DOI:10.1155/2011/852419 · 2.71 Impact Factor