Article

Expression of Interneuron Markers in the Dorsolateral Prefrontal Cortex of the Developing Human and in Schizophrenia

The Stanley Medical Research Institute, Chevy Chase Village, Maryland, United States
American Journal of Psychiatry (Impact Factor: 13.56). 11/2010; 167(12):1479-88. DOI: 10.1176/appi.ajp.2010.09060784
Source: PubMed

ABSTRACT The onset of schizophrenia symptoms in late adolescence implies a neurodevelopmental trajectory for the disease. Indeed, the γ-aminobutyric acid (GABA) inhibitory system shows protracted development, and GABA-ergic deficits are widely replicated in postmortem schizophrenia studies. The authors examined expression of several interneuron markers across postnatal human development and in schizophrenia to assess whether protracted development of certain interneuron subpopulations may be associated with a particular vulnerability in schizophrenia.
RNA was extracted postmortem from dorsolateral prefrontal cortex of individuals from age 6 weeks to 49 years (N=68) and from a cohort of normal comparison subjects and schizophrenia patients (N=74, 37 pairs). Expression levels of parvalbumin, cholecystokinin, somatostatin, neuropeptide Y, calretinin, calbindin, and vasoactive intestinal peptide were measured by quantitative reverse transcription-polymerase chain reaction. Changes in calretinin protein levels were examined by Western blot.
Interneuron marker genes followed one of three general expression profiles: either increasing (parvalbumin, cholecystokinin) or decreasing (somatostatin, calretinin, neuropeptide Y) in expression over postnatal life, with the most dramatic changes seen in the first few years before reaching a plateau; or increasing to peak expression in the toddler years before decreasing (calbindin, vasoactive intestinal peptide). mRNA expression of all genes, with the exception of calbindin (which increased), showed a reduction (8%-31%) in schizophrenia. Somatostatin showed the most dramatic reduction (31%) in schizophrenia.
It appears that a heterogeneous population of interneurons is implicated in schizophrenia. Further studies are needed to determine whether specific interneuron subpopulations are altered or whether common or distinct upstream pathways are responsible for interneuron deficits in schizophrenia.

0 Followers
 · 
167 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Schizophrenia is a complex mental disorder that displays behavioral deficits such as decreased sensory gating, reduced social interaction and working memory deficits. The neurodevelopmental model is one of the widely accepted hypotheses of the etiology of schizophrenia. Subtle developmental abnormalities of the brain which stated long before the onset of clinical symptoms are thought to lead to the emergence of illness. Schizophrenia has strong genetic components but its underlying molecular pathogenesis is still poorly understood. Genetic linkage and association studies have identified several genes involved in neuronal migrations as candidate susceptibility genes for schizophrenia, although their effect size is small. Recent progress in copy number variation studies also has identified much higher risk loci such as 22q11. Based on these genetic findings, we are now able to utilize genetically-defined animal models. Here we summarize the results of neurodevelopmental and behavioral analysis of genetically-defined animal models. Furthermore, animal model experiments have demonstrated that embryonic and perinatal neurodevelopmental insults in neurogenesis and neuronal migrations cause neuronal functional and behavioral deficits in affected adult animals, which are similar to those of schizophrenic patients. However, these findings do not establish causative relationship. Genetically-defined animal models are a critical approach to explore the relationship between neuronal migration abnormalities and behavioral abnormalities relevant to schizophrenia.
    Frontiers in Neuroscience 01/2015; 9:74. DOI:10.3389/fnins.2015.00074
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The human subependymal zone (SEZ) is debatably a source of newly born neurons throughout life and neurogenesis is a multi-step process requiring distinct transcripts during cell proliferation and early neuronal maturation, along with orchestrated changes in gene expression during cell state/fate transitions. Furthermore, it is becoming increasingly clear that the majority of our genome that results in production of non-protein coding RNAs plays vital roles in the evolution, development, adaptation and region-specific function of the human brain. We predicted that some transcripts expressed in the SEZ may be unique to this specialized brain region, and that a comprehensive transcriptomic analysis of this region would aid in defining expression changes during neuronal birth and growth in adult humans. Here, we used deep RNA sequencing of human SEZ tissue during adulthood and aging to characterize the transcriptional landscape with a particular emphasis on long non-coding RNAs (lncRNAs). The data shows predicted age-related changes in mRNAs encoding proliferation, progenitor and inflammatory proteins as well as a unique subset of lncRNAs that are highly expressed in the human SEZ, many of which have unknown functions. Our results suggest the existence of robust proliferative and neuronal differentiation potential in the adult human SEZ and lay the foundation for understanding the involvement of lncRNAs in postnatal neurogenesis and potentially associated neurodevelopmental diseases that emerge after birth.
    Frontiers in Neurology 03/2015; 6. DOI:10.3389/fneur.2015.00045
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cognitive deficits are a core clinical feature of schizophrenia but respond poorly to available medications. Thus, understanding the neural basis of these deficits is crucial for the development of new therapeutic interventions. The types of cognitive processes affected in schizophrenia are thought to depend on the precisely timed transmission of information in cortical regions via synchronous oscillations at gamma band frequency. Here, we review 1) data from clinical studies suggesting that induction of frontal cortex gamma oscillations during tasks that engage cognitive or complex perceptual functions is attenuated in schizophrenia; 2) findings from basic neuroscience studies highlighting the features of parvalbumin-positive interneurons that are critical for gamma oscillation production; and 3) results from recent postmortem human brain studies providing additional molecular bases for parvalbumin-positive interneuron alterations in prefrontal cortical circuitry in schizophrenia. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
    Biological psychiatry 03/2015; DOI:10.1016/j.biopsych.2015.03.010 · 9.47 Impact Factor

Samantha Fung