Article

Differential requirements for CD80/86–CD28 costimulation in primary and memory CD4 T cell responses to vaccinia virus

Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, NH 03756, United States.
Cellular Immunology (Impact Factor: 1.87). 10/2010; 266(2):130-4. DOI: 10.1016/j.cellimm.2010.09.008
Source: PubMed

ABSTRACT Vaccinia virus infection can confer immunity to smallpox by inducing potent T cell and antibody responses. While the CD8 T cell response to vaccinia virus has been well characterized, less is known about factors required for priming and memory for the CD4 T cells. Focusing on two recently described epitopes, we show that after intranasal infection, both I1L and L4R epitopes are co-dominant during the acute response, but the I1L epitope dominates during memory. CD4 T cell priming was intact in the absence of CD80/86, however secondary responses were reduced. This contrasts with our previous data showing CD80/86-CD28 interaction is required for optimal primary and memory CD8 T cell responses. The absence of CD80/86 also changed the immunodominance hierarchy during memory, with the I1L and L4R responses becoming co-dominant in knockout mice. These data highlight different costimulatory requirements for primary CD4 and CD8 T cell responses to vaccinia virus.

Download full-text

Full-text

Available from: Leah M Rommereim, May 19, 2014
0 Followers
 · 
123 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The lymphocytic choriomeningitis virus (LCMV) system constitutes one of the most widely used models for the study of infectious disease and the regulation of virus-specific T cell immunity. However, with respect to the activity of costimulatory and associated regulatory pathways, LCMV-specific T cell responses have long been regarded as relatively independent and thus distinct from the regulation of T cell immunity directed against many other viral pathogens. Here, we have reevaluated the contribution of CD28-CD80/86 costimulation in the LCMV system by use of CD80/86-deficient mice, and our results demonstrate that a disruption of CD28-CD80/86 signaling compromises the magnitude, phenotype, and/or functionality of LCMV-specific CD8(+) and/or CD4(+) T cell populations in all stages of the T cell response. Notably, a profound inhibition of secondary T cell immunity in LCMV-immune CD80/86-deficient mice emerged as a composite of both defective memory T cell development and a specific requirement for CD80 but not CD86 in the recall response, while a related experimental scenario of CD28-dependent yet CD80/86-independent secondary CD8(+) T cell immunity suggests the existence of a CD28 ligand other than CD80/86. Furthermore, we provide evidence that regulatory T cells (T(REG)s), the homeostasis of which is altered in CD80/86(-/-) mice, contribute to restrained LCMV-specific CD8(+) T cell responses in the presence of CD80/86. Our observations can therefore provide a more coherent perspective on CD28-CD80/86 costimulation in antiviral T cell immunity that positions the LCMV system within a shared context of multiple defects that virus-specific T cells acquire in the absence of CD28-CD80/86 costimulation.
    Journal of Virology 12/2011; 86(4):1955-70. DOI:10.1128/JVI.05949-11 · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The "two-signal paradigm" in T cell activation predicts that the cooperation of "signal 1," provided by the T cell receptor (TCR) through engagement of major histocompatility complex (MHC)-presented peptide, with "signal 2″ provided by costimulatory molecules, the prototype of which is CD28, is required to induce T cell effector functions. While the individual signalling pathways are well understood, little is known about global changes in the proteome pattern during TCR/CD28-mediated activation. Therefore, comparative 2-DE-based proteome analyses of CD3(+) CD69(-) resting T cells versus cells incubated with (i) the agonistic anti-CD3 antibody OKT3 mimicking signal 1 in absence or presence of IL-2 and/or with (ii) the agonistic antibody 15E8 triggering CD28-mediated signaling were performed. Differentially regulated spots were defined leading to the identification of proteins involved in the regulation of the metabolism, shaping and maintenance of the cytoskeleton and signal transduction. Representative members of the differentially expressed protein families, such as calmodulin (CALM), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), L-lactate dehydrogenase (LDH), Rho GDP-dissociation inhibitor 2 (GDIR2), and platelet basic protein (CXCL7), were independently verified by flow cytometry. Data provide a detailed map of individual protein alterations at the global proteome level in response to TCR/CD28-mediated T cell activation.
    PLoS ONE 04/2012; 7(4):e32994. DOI:10.1371/journal.pone.0032994 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although T cell activation has been classically described to require distinct, positive stimulation signals that include B7-1 (CD80) and B7-2 (CD86) costimulation, overriding suppression signals that avert immune-mediated host injury are equally important. How these opposing stimulation and suppression signals work together remains incompletely defined. Our recent studies demonstrate that CD8 Teff activation in response to cognate peptide stimulation is actively suppressed by the Foxp3(+) subset of CD4 cells, called Tregs. Here, we show that the elimination of Treg suppression does not bypass the requirement for positive B7-1/B7-2 costimulation. The expansion, IFN-γ cytokine production, cytolytic, and protective features of antigen-specific CD8 T cells stimulated with purified cognate peptide in Treg-ablated mice were each neutralized effectively by CTLA-4-Ig that blocks B7-1/B7-2. In turn, given the efficiency whereby CTLA-4-Ig overrides the effects of Treg ablation, the role of Foxp3(+) cell-intrinsic CTLA-4 in mitigating CD8 Teff activation was also investigated. With the use of mixed chimera mice that contain CTLA-4-deficient Tregs exclusively after the ablation of WT Foxp3(+) cells, a critical role for Treg CTLA-4 in suppressing the expansion, cytokine production, cytotoxicity, and protective features of peptide-stimulated CD8 T cells is revealed. Thus, the activation of protective CD8 T cells requires positive B7-1/B7-2 costimulation even when suppression by Tregs and in particular, Treg-intrinsic CTLA-4 is circumvented.
    Journal of leukocyte biology 06/2013; 94(2). DOI:10.1189/jlb.0313118 · 4.99 Impact Factor
Show more