Article

Regulation of glycogen synthase kinase-3 during bipolar mania treatment

Beijing Anding Hospital, Capital Medical University, 1720 Seventh Avenue South, Beijing, China.
Bipolar Disorders (Impact Factor: 4.89). 11/2010; 12(7):741-52. DOI: 10.1111/j.1399-5618.2010.00866.x
Source: PubMed

ABSTRACT Bipolar disorder is a debilitating psychiatric illness presenting with recurrent mania and depression. The pathophysiology of bipolar disorder is poorly understood, and molecular targets in the treatment of bipolar disorder remain to be identified. Preclinical studies have suggested that glycogen synthase kinase-3 (GSK3) is a potential therapeutic target in bipolar disorder, but evidence of abnormal GSK3 in human bipolar disorder and its response to treatment is still lacking.
This study was conducted in acutely ill type I bipolar disorder subjects who were hospitalized for a manic episode. The protein level and the inhibitory serine phosphorylation of GSK3 in peripheral blood mononuclear cells of bipolar manic and healthy control subjects were compared, and the response of GSK3 to antimanic treatment was evaluated.
The levels of GSK3α and GSK3β in this group of bipolar manic subjects were higher than healthy controls. Symptom improvement during an eight-week antimanic treatment with lithium, valproate, and atypical antipsychotics was accompanied by a significant increase in the inhibitory serine phosphorylation of GSK3, but not the total level of GSK3, whereas concomitant electroconvulsive therapy treatment during a manic episode appeared to dampen the response of GSK3 to pharmacological treatment.
Results of this study suggest that GSK3 can be modified during the treatment of bipolar mania. This finding in human bipolar disorder is in agreement with preclinical data suggesting that inhibition of GSK3 by increasing serine phosphorylation is a response of GSK3 to psychotropics used in bipolar disorder, supporting the notion that GSK3 is a promising molecular target in the pharmacological treatment of bipolar disorder.

0 Followers
 · 
86 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aberrant synaptic plasticity, originating from abnormalities in dopamine and/or glutamate transduction pathways, may contribute to the complex clinical manifestations of bipolar disorder (BD). Dopamine and glutamate systems cross-talk at multiple levels, such as at the postsynaptic density (PSD). The PSD is a structural and functional protein mesh implicated in dopamine and glutamate-mediated synaptic plasticity. Proteins at PSD have been demonstrated to be involved in mood disorders pathophysiology and to be modulated by antipsychotics and mood stabilizers. On the other side, post-receptor effectors such as protein kinase B (Akt), glycogen synthase kinase-3 (GSK-3) and the extracellular signal-regulated kinase (Erk), which are implicated in both molecular abnormalities and treatment of BD, may interact with PSD proteins, and participate in the interplay of the dopamine-glutamate signalling pathway. In this review, we describe emerging evidence on the molecular cross-talk between dopamine and glutamate signalling in BD pathophysiology and pharmacological treatment, mainly focusing on dysfunctions in PSD molecules. We also aim to discuss future therapeutic strategies that could selectively target the PSD-mediated signalling cascade at the crossroads of dopamine-glutamate neurotransmission.
    Journal of Psychopharmacology 02/2014; 28(6). DOI:10.1177/0269881114523864 · 2.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mood disorders are multifactorial and heterogeneous diseases caused by the interplay of several genetic and environmental factors. In humans, mood disorders are often accompanied by abnormalities in the organization of the circadian system, which normally synchronizes activities and functions of cells and tissues. Studies on animal models suggest that the basic circadian clock mechanism, which runs in essentially all cells, is implicated in the modulation of biological phenomena regulating affective behaviors. In particular, recent findings highlight the importance of the circadian clock mechanisms in neurological pathways involved in mood, such as monoaminergic neurotransmission, hypothalamus-pituitary-adrenal axis regulation, suprachiasmatic nucleus and olfactory bulb activities, and neurogenesis. Defects at the level of both, the circadian clock mechanism and system, may contribute to the etiology of mood disorders. Modification of the circadian system using chronotherapy appears to be an effective treatment for mood disorders. Additionally, understanding the role of circadian clock mechanisms, which affect the regulation of different mood pathways, will open up the possibility for targeted pharmacological treatments. (PsycINFO Database Record (c) 2014 APA, all rights reserved).
    Behavioral Neuroscience 03/2014; DOI:10.1037/a0035883 · 3.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mood disorders major depressive disorder and bipolar disorder are prevalent, are inadequately treated, and little is known about their etiologies. A better understanding of the causes of mood disorders would benefit from improved animal models of mood disorders, which now rely on behavioral measurements. This review considers the limitations in relating measures of rodent behaviors to mood disorders, and the evidence from behavioral assessments indicating that glycogen synthase kinase-3 (GSK3) dysregulation promotes mood disorders and is a potential target for treating mood disorders. The classical mood stabilizer lithium was identified by studying animal behaviors and later was discovered to be an inhibitor of GSK3. Several mood-relevant behavioral effects of lithium in rodents have been identified, and most have now been shown to be due to its inhibition of GSK3. An extensive variety of pharmacological and molecular approaches for manipulating GSK3 are discussed, the results of which strongly support the proposal that inhibition of GSK3 reduces both depression-like and manic-like behaviors. Studies in human postmortem brain and peripheral cells also have identified correlations between alterations in GSK3 and mood disorders. Evidence is reviewed that depression may be associated with impaired inhibitory control of GSK3, and mania by hyper-stimulation of GSK3. Taken together, these studies provide substantial support for the hypothesis that inhibition of GSK3 activity is therapeutic for mood disorders. Future research should identify the causes of dysregulated GSK3 in mood disorders and the actions of GSK3 that contribute to these diseases.
    Frontiers in Molecular Neuroscience 08/2011; 4:16. DOI:10.3389/fnmol.2011.00016

Preview

Download
3 Downloads
Available from