A global meta-analysis of Tuber ITS rDNA sequences: species diversity, host associations and long-distance dispersal.

Department of Biology, Duke University, Durham, NC 27708-0338, USA.
Molecular Ecology (Impact Factor: 5.84). 10/2010; 19(22):4994-5008. DOI: 10.1111/j.1365-294X.2010.04855.x
Source: PubMed

ABSTRACT Truffles (Tuber) are ectomycorrhizal fungi characterized by hypogeous fruitbodies. Their biodiversity, host associations and geographical distributions are not well documented. ITS rDNA sequences of Tuber are commonly recovered from molecular surveys of fungal communities, but most remain insufficiently identified making it difficult to determine whether these sequences represent conspecific or novel taxa. In this meta-analysis, over 2000 insufficiently identified Tuber sequences from 76 independent studies were analysed within a phylogenetic framework. Species ranges, host associates, geographical distributions and intra- and interspecific ITS variability were assessed. Over 99% of the insufficiently identified Tuber sequences grouped within clades composed of species with little culinary value (Maculatum, Puberulum and Rufum). Sixty-four novel phylotypes were distinguished including 36 known only from ectomycorrhizae or soil. Most species of Tuber showed 1-3% intraspecific ITS variability and >4% interspecific ITS sequence variation. We found 123 distinct phylotypes based on 96% ITS sequence similarity and estimated that Tuber contains a minimum of 180 species. Based on this meta-analysis, species in Excavatum, Maculatum and Rufum clades exhibit preference for angiosperm hosts, whereas those in the Gibbosum clade are preferential towards gymnosperms. Sixteen Tuber species (>13% of the known diversity) have putatively been introduced to continents or islands outside their native range.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Truffles, symbiotic fungi renown for the captivating aroma of their fruiting bodies, are colonized by a complex bacterial community of unknown function. We characterized the bacterial community of the white truffle Tuber borchii and tested the involvement of its microbiome in the production of sulphur-containing volatiles. We found that sulphur-containing volatiles such as thiophene derivatives, characteristic of T. borchii fruiting bodies, resulted from the biotransformation of non-volatile precursor(s) into volatile compounds by bacteria. The bacterial community of T. borchii was dominated by α- and β-Proteobacteria. Interestingly all bacteria phyla/classes tested in this study were able to produce thiophene volatiles from T. borchii fruiting body extract, irrespectively of their isolation source (truffle or other sources). This indicates that the ability to produce thiophene volatiles might be wide spread among bacteria and possibly linked to primary metabolism. Treatment of fruiting bodies with antibacterial agents fully suppressed the production of thiophene volatiles while fungicides had no inhibitory effect. This suggests that during the sexual stage of truffles, thiophene volatiles are exclusively synthesized by bacteria and not by the truffle. At this stage the origin of thiophenes precursor in T. borchii remains elusive and the involvement of yeasts or other bacteria cannot be excluded.
    Environmental Microbiology 06/2014; · 6.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tuber borchii is an ectomycorrhizal edible truffle, commonly called “bianchetto” (whitish truffle) to distinguish it from the more valuable white truffle found in Italy (T. magnatum). Although Tuber borchii also has a fairly high commercial value, information on its ecology, and especially its optimum rainfall and temperature values are lacking. In recent years the issue of climate change has steadily grown in importance, not only in the scientific world, but also politically and in civil society. Over the last century there has been a general increase in the temperature in Italy of about 1˚C. Several studies have underlined how climatic changes influence the optimum growth and distribution of various species of truffle. This contribution aims to illustrate the fluctuation of T. borchii sporocarps production in different timescales and show how these alterations are driven by rainfall and temperature factors. The research, carried out in five different natural T. borchii production areas, reveals that the production of truffles is significantly higher after autumn months characterized by abundant rainfall and cold temperatures.
    Natural Resources 06/2014; 5:408-418.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lethal amanitas (Amanita section Phalloideae) are a group of wild, fatal mushrooms causing many poisoning cases worldwide. However, the diversity and evolutionary history of these lethal mushrooms remain poorly known due to the limited sampling and insufficient gene fragments employed for phylogenetic analyses. In this study, five gene loci (nrLSU, ITS, rpb2, ef1-alpha and beta-tubulin) with a widely geographic sampling from East and South Asia, Europe, North and Central America, South Africa and Australia were analysed with maximum-likelihood, maximum-parsimony and Bayesian inference methods. Biochemical analyses were also conducted with intention to detect amatoxins and phalloidin in 14 representative samples.Result: Lethal amanitas were robustly supported to be a monophyletic group after excluding five species that were provisionally defined as lethal amanitas based on morphological studies. In lethal amanitas, 28 phylogenetic species were recognised by integrating molecular phylogenetic analyses with morphological studies, and 14 of them represented putatively new species. The biochemical analyses indicated a single origin of cyclic peptide toxins (amatoxins and phalloidin) within Amanita and suggested that this kind of toxins seemed to be a synapomorphy of lethal amanitas. Molecular dating through BEAST and biogeographic analyses with LAGRANGE and RASP indicated that lethal amanitas most likely originated in the Palaeotropics with the present crown group dated around 64.92 Mya in the early Paleocene, and the East Asia-eastern North America or Eurasia-North America-Central America disjunct distribution patterns were primarily established during the middle Oligocene to Miocene.
    BMC Evolutionary Biology 06/2014; 14(1):143. · 3.41 Impact Factor

Full-text (2 Sources)

Available from
May 22, 2014