Phenotypic and functional profiling of malaria-induced CD8 and CD4 T cells during blood-stage infection with Plasmodium yoelii.

Joint ICGEB-Emory Vaccine Center, Aruna Asaf Ali Marg, New Delhi, India.
Immunology (Impact Factor: 3.74). 10/2010; 132(2):273-86. DOI: 10.1111/j.1365-2567.2010.03363.x
Source: PubMed

ABSTRACT It is widely accepted that antibodies and CD4 T cells play critical roles in the immune response during the blood stage of malaria, whereas the role of CD8 T cells remains controversial. Here, we show that both CD8 and CD4 T cells robustly responded to an acute self-limiting blood-stage infection with Plasmodium yoelii. Similar to antigen-specific T cells, both CD8 and CD4 T cells showed dynamic expression of the surface proteins interleukin (IL)-7R and programmed death-1 (PD-1). Additionally, activated CD8 T cells showed differences in the expression of Killer cell lectin-like receptor G1, L-selectin and B cell lymphoma-2 and produced granzyme B, indicating cytotoxic activity, and the initially high expression of T-box transcription factor TBX21 in malaria-activated CD4 T cells indicated an early T helper type 1 (Th1)-skewed immune response. Our data demonstrate that blood-stage malaria infection results in a striking T-cell response and that activated CD8 and CD4 T cells have phenotypic and functional characteristics that are consistent with conventional antigen-specific effector and memory T cells. Therefore, a better understanding of the CD8 and CD4 T-cell response induced by blood-stage infection may prove to be essential in the development of a vaccine that targets the erythrocytic stage of the malarial parasite.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Previous studies indicated that Plasmodium infection activates the immune system, including memory CD4+ T cells, which constitute the reservoir of human immunodeficiency virus type-1 (HIV-1). Therefore, we postulated that co-infection with malaria might activate the reservoir of HIV-1. To test this hypothesis, we used a rhesus macaque model of co-infection with malaria and simian immunodeficiency virus (SIV), along with antiretroviral therapy (ART).ResultsOur results showed that Plasmodium infection reduced both the replication-competent virus pool in resting CD4+ T cells and the integrated virus DNA (iDNA) load in peripheral blood mononuclear cells in the monkeys. This reduction might be attributable to malaria-mediated activation and apoptotic induction of memory CD4+ T cells. Further studies indicated that histone acetylation and NF-kappaB (NF-¿B) activation in resting CD4+ T cells may also play an important role in this reduction.Conclusions The findings of this work expand our knowledge of the interaction between these two diseases. As more HIV-1-infected individuals in malaria-endemic areas receive ART, we should explore whether any of the patients co-infected with Plasmodium experience virologic benefits.
    Retrovirology 12/2014; 11(1):112. DOI:10.1186/PREACCEPT-1750996255140396 · 4.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CD4(+) T-cells have been shown to play a central role in immune control of infection with Plasmodium parasites. At the erythrocytic stage of infection, IFN-γ production by CD4(+) T-cells and CD4(+) T-cell help for the B-cell response are required for control and elimination of infected red blood cells. CD4(+) T-cells are also important for controlling Plasmodium pre-erythrocytic stages through the activation of parasite-specific CD8(+) T-cells. However, excessive inflammatory responses triggered by the infection have been shown to drive pathology. Early classical experiments demonstrated a biphasic CD4(+) T-cell response against erythrocytic stages in mice, in which T helper (Th)1 and antibody-helper CD4(+) T-cells appear sequentially during a primary infection. While IFN-γ-producing Th1 cells do play a role in controlling acute infections, and they contribute to acute erythrocytic-stage pathology, it became apparent that a classical Th2 response producing IL-4 is not a critical feature of the CD4(+) T-cell response during the chronic phase of infection. Rather, effective CD4(+) T-cell help for B-cells, which can occur in the absence of IL-4, is required to control chronic parasitemia. IL-10, important to counterbalance inflammation and associated with protection from inflammatory-mediated severe malaria in both humans and experimental models, was originally considered be produced by CD4(+) Th2 cells during infection. We review the interpretations of CD4(+) T-cell responses during Plasmodium infection, proposed under the original Th1/Th2 paradigm, in light of more recent advances, including the identification of multifunctional T-cells such as Th1 cells co-expressing IFN-γ and IL-10, the identification of follicular helper T-cells (Tfh) as the predominant CD4(+) T helper subset for B-cells, and the recognition of inherent plasticity in the fates of different CD4(+) T-cells.
    Frontiers in Immunology 01/2014; 5:671. DOI:10.3389/fimmu.2014.00671
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although clinical immunity to malaria eventually develops among children living in endemic settings, the underlying immunologic mechanisms are not known. The Vδ2(+) subset of γδ T cells have intrinsic reactivity to malaria antigens, can mediate killing of Plasmodium falciparum merozoites, and expand markedly in vivo after malaria infection in previously naïve hosts, but their role in mediating immunity in children repeatedly exposed to malaria is unclear. We evaluated γδ T cell responses to malaria among 4-year-old children enrolled in a longitudinal study in Uganda. We found that repeated malaria was associated with reduced percentages of Vδ2(+) γδ T cells in peripheral blood, decreased proliferation and cytokine production in response to malaria antigens, and increased expression of immunoregulatory genes. Further, loss and dysfunction of proinflammatory Vδ2(+) γδ T cells were associated with a reduced likelihood of symptoms upon subsequent P. falciparum infection. Together, these results suggest that repeated malaria infection during childhood results in progressive loss and dysfunction of Vδ2(+) γδ T cells that may facilitate immunological tolerance of the parasite.
    Science translational medicine 08/2014; 6(251):251ra117. DOI:10.1126/scitranslmed.3009793 · 14.41 Impact Factor


Available from

Similar Publications