Article

ABC multidrug transporters: target for modulation of drug pharmacokinetics and drug-drug interactions.

Pharmacologie Cellulaire et moléculaire, Louvain Drug Research Institute, Université Catholique de Louvain, B- 1200 Brussels, Belgium.
Current drug targets (Impact Factor: 3.93). 11/2010; 12(5):600-20.
Source: PubMed

ABSTRACT Nine proteins of the ABC superfamily (P-glycoprotein, 7 MRPs and BCRP) are involved in multidrug transport. Being localised at the surface of endothelial or epithelial cells, they expel drugs back to the external medium (if located at the apical side [P-glycoprotein, BCRP, MRP2, MRP4 in the kidney]) or to the blood (if located at the basolateral side [MRP1, MRP3, MRP4, MRP5]), modulating thereby their absorption, distribution, and elimination. In the CNS, most transporters are oriented to expel drugs to the blood. Transporters also cooperate with Phase I/Phase II metabolism enzymes by eliminating drug metabolites. Their major features are (i) their capacity to recognize drugs belonging to unrelated pharmacological classes, and (ii) their redundancy, a single molecule being possibly substrate for different transporters. This ensures an efficient protection of the body against invasion by xenobiotics. Competition for transport is now characterized as a mechanism of interaction between co-administered drugs, one molecule limiting the transport of the other, potentially affecting bioavailability, distribution, and/or elimination. Again, this mechanism reinforces drug interactions mediated by cytochrome P450 inhibition, as many substrates of P-glycoprotein and CYP3A4 are common. Induction of the expression of genes coding for MDR transporters is another mechanism of drug interaction, which could affect all drug substrates of the up-regulated transporter. Overexpression of MDR transporters confers resistance to anticancer agents and other therapies. All together, these data justify why studying drug active transport should be part of the evaluation of new drugs, as recently recommended by the FDA.

0 Bookmarks
 · 
136 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: One of the greatest challenges in cancer drug therapy is to maximize the effectiveness of the active agent while reducing its systemic adverse effects. What is more, many widely-used chemoterapeutic agents present unfavorable physicochemical properties (e.g. low solubility, lack of chemical or biological stability) that hamper or limit their therapeutic applications. All these issues may be overcome by designing adequate drug delivery systems; nanocarriers are particularly suitable for this purpose. Nanosystems can be used for targeted-drug release, treatment, diagnostic imaging and therapy monitoring. They allow the formulation of drug delivery systems with user-defined characteristics regarding solubility, biodegradability, particle size, release kinetics and active targeting, among others. This review (Part I) focuses on recent patents published between 2008 and the present day, related to nanospheres, nanocapsules and nanogels applied to anticancer drug therapy. Other nanosystems will be covered in a second article (Part II), currently in preparation.
    Recent patents on anti-cancer drug discovery. 12/2014; 9(1):83-98.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The great efforts of many researchers have brought down some of the barriers that exist to turn a good in vitro compound into a potential in vivo drug. The advent of pharmaceutical nanotechnology has allowed an arsenal of drugs with poor stability, low solubility, high off-target toxicity and other disadvantageous features, to be accessible as pharmaceutical products that could be administered to a patient. Nanotechnology was introduced in drug delivery very long ago, but has flourished with unprecedented intensity during the last twenty years and now a diversity of nano-based preparations are at clinical stage of development or already available in the market. Undoubtedly, nanotechnology plays a key role in future pharmaceutical development and pharmacotherapy. In the first part of this review, we have already discussed recent (2008-2012) patents on linear polymer-based nanosystems (nanogels, nanospheres and nanocapsules) applications to cancer therapy. Here, we have expanded such analysis to branched polymers (dendrimers), self-assembling nanomicelles and lipid-based nanocarriers.
    Recent Patents on Anti-Cancer Drug Discovery 01/2014; 9(1):99-128. · 2.70 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Antiretroviral drug absorption and disposition in cervicovaginal tissue is important for the effectiveness of vaginally or orally administered drug products in pre-exposure prophylaxis (PrEP) of HIV-1 sexual transmission to women. Therefore, it is imperative to understand critical determinants of cervicovaginal tissue pharmacokinetics. This study aimed to examine the mRNA expression and protein localization of three efflux transporters, P-glycoprotein (P-gp), multidrug resistance associated protein 4 (MRP4) and breast cancer resistance protein (BCRP), in the lower genital tract of premenopausal women and pigtailed macaques. Along the human lower genital tract, the three transporters were moderately to highly expressed compared to colorectal tissue and liver, as revealed by real-time RT-PCR. In a given genital tract segment, the transporter with highest expression level was either BCRP or P-gp, while MRP4 was always expressed at the lowest level among the three transporters tested. The immunohistochemical staining showed that P-gp and MRP4 were localized in multiple cell types including epithelial cells, and vascular endothelial cells. BCRP was predominantly localized in the vascular endothelial cells. Differences in transporter mRNA level and localization were observed among endocervix, ectocervix and vagina. Compared to human tissues, the macaque cervicovaginal tissues displayed comparable expression and localization pattern of the three transporters, although subtle differences were observed between the two species. The role of these cervicovaginal transporters in the drug absorption and disposition warrants further studies. The resemblance between human and pigtailed macaque in transporter expression and localization suggests the utility of the macaque model in the studies of human cervicovaginal transporters. Key words: Transporter, PrEP, P-gp, BCRP, MRP4, Cervix, Vagina.
    AIDS research and human retroviruses 05/2014; · 2.18 Impact Factor

Full-text

View
9 Downloads
Available from