Article

ABC multidrug transporters: target for modulation of drug pharmacokinetics and drug-drug interactions.

Pharmacologie Cellulaire et moléculaire, Louvain Drug Research Institute, Université Catholique de Louvain, B- 1200 Brussels, Belgium.
Current drug targets (Impact Factor: 3.93). 11/2010; 12(5):600-20. DOI: 10.2174/138945011795378504
Source: PubMed

ABSTRACT Nine proteins of the ABC superfamily (P-glycoprotein, 7 MRPs and BCRP) are involved in multidrug transport. Being localised at the surface of endothelial or epithelial cells, they expel drugs back to the external medium (if located at the apical side [P-glycoprotein, BCRP, MRP2, MRP4 in the kidney]) or to the blood (if located at the basolateral side [MRP1, MRP3, MRP4, MRP5]), modulating thereby their absorption, distribution, and elimination. In the CNS, most transporters are oriented to expel drugs to the blood. Transporters also cooperate with Phase I/Phase II metabolism enzymes by eliminating drug metabolites. Their major features are (i) their capacity to recognize drugs belonging to unrelated pharmacological classes, and (ii) their redundancy, a single molecule being possibly substrate for different transporters. This ensures an efficient protection of the body against invasion by xenobiotics. Competition for transport is now characterized as a mechanism of interaction between co-administered drugs, one molecule limiting the transport of the other, potentially affecting bioavailability, distribution, and/or elimination. Again, this mechanism reinforces drug interactions mediated by cytochrome P450 inhibition, as many substrates of P-glycoprotein and CYP3A4 are common. Induction of the expression of genes coding for MDR transporters is another mechanism of drug interaction, which could affect all drug substrates of the up-regulated transporter. Overexpression of MDR transporters confers resistance to anticancer agents and other therapies. All together, these data justify why studying drug active transport should be part of the evaluation of new drugs, as recently recommended by the FDA.

0 Bookmarks
 · 
164 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract 1. Regulation of hepatic metabolism or transport may lead to increase in drug clearance and compromise efficacy or safety. In this study, cryopreserved human hepatocytes were used to assess the effect of 309 compounds on the activity and mRNA expression (using qPCR techniques) of CYP1A2, CYP2B6 and CYP3A4, as well as mRNA expression of six hepatic transport proteins: OATP1B1 (SCLO1B1), OCT1 (SLC22A1), MDR1 (ABCB1), MRP2 (ABCC2), MRP3 (ABCC3) and BCRP (ABCG2). 2. The results showed that 6% of compounds induced CYP1A2 activity (1.5-fold increase); 30% induced CYP2B6 while 23% induced CYP3A4. qPCR data identified 16, 33 or 32% inducers of CYP1A2, CYP2B6 or CYP3A4, respectively. MRP2 was induced by 27 compounds followed by MDR1 (16) > BCRP (9) > OCT1 (8) > OATP1B1 (5) > MRP3 (2). 3. CYP3A4 appeared to be down-regulated (≥2-fold decrease in mRNA expression) by 53 compounds, 10 for CYP2B6, 6 for OCT1, 4 for BCRP, 2 for CYP1A2 and OATP1B1 and 1 for MDR1 and MRP2. 4. Structure-activity relationship analysis showed that CYP2B6 and CYP3A4 inducers are bulky lipophilic molecules with a higher number of heavy atoms and a lower number of hydrogen bond donors. Finally, a strategy for testing CYP inducers in drug discovery is proposed.
    Xenobiotica 09/2014; · 2.10 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract The xenobiotic transporters are among the most important constituents of detoxification system in living organisms. Breast cancer resistance protein (BCRP/ABCG2) is one of the major transporters involved in the efflux of xenobiotics. To understand its role in chemotherapeutic and multidrug resistance, it is crucial to establish the determinants of its substrate specificity, which obviously is of high relevance for successful therapy of many diseases. This article summarizes the current knowledge about the substrate preferences of BCRP. We overview the factors which determine its activity, inhibition and substrate recognition, focusing on the structural features of the transporter. BCRP substrate specificity is quite low as it interacts with a spectrum of substances with only a few common features: hydrophobic and aromatic regions, possibly a flat conformation and the metal ion-, oxygen- and nitrogen-containing functionalities, most of which may be the donors/acceptors of H-bonds. Several amino acid residues and structural motifs are responsible for BCRP activity and substrate recognition. Thus, the active form of BCRP, at least a dimer or a larger oligomer is maintained by intramolecular disulfide bridge that involves Cys(603) residues. The GXXXG motif in transmembrane helix 1, Cys residues, Arg(482) and Lys(86) are responsible for maintaining the protein structure, which confers transport activity, and the His(457) or Arg(456) residues are directly involved in substrate binding. Arg(482) does not directly bind substrates, but electrostatically interacts with charged molecules, which initiates the conformational changes that transmit the signal from the transmembrane regions to the ABC domain.
    Drug metabolism reviews. 07/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Multidrug resistance (MDR) occurs in prostate cancer, and this happens when cancer cells resist chemotherapeutic drugs by pumping them out of the cells. MDR inhibitors such as cyclosporine A (CsA) can stop the pumping and enhance the drugs accumulated within the cells. The cellular drug accumulation is monitored using a microfluidic chip mounted on a single cell bioanalyzer. This equipment has been developed to measure accumulation of drugs such as doxorubicin (DOX) and fluorescently labeled paclitaxel (PTX) in single prostate cancer cells. The inhibition of drug efflux on the same prostate cell was examined in drug-sensitive and drug-resistant cells. Accumulation of these drug molecules was not found in the MDR cells, PC-3 RX-DT2R cells. Enhanced drug accumulation was observed only after treating the MDR cell in the presence of 5 μM of CsA as the MDR inhibitor. We envision this monitoring of the accumulation of fluorescent molecules (drug or fluorescent molecules), if Conducted on single patient cancer cells, can provide information for clinical monitoring of patients undergoing chemotherapy in the future.
    ASME 2014 IMECE; 11/2014

Full-text

Download
10 Downloads
Available from