Measuring the escape velocity and mass profiles of galaxy clusters beyond their virial radius

Monthly Notices of the Royal Astronomical Society (Impact Factor: 5.23). 11/2010; DOI: 10.1111/j.1365-2966.2010.17946.x
Source: arXiv

ABSTRACT The caustic technique uses galaxy redshifts alone to measure the escape velocity and mass profiles of galaxy clusters to clustrocentric distances well beyond the virial radius, where dynamical equilibrium does not necessarily hold. We provide a detailed description of this technique and analyse its possible systematic errors. We apply the caustic technique to clusters with mass M_200>=10^{14}h^{-1} M_sun extracted from a cosmological hydrodynamic simulation of a LambdaCDM universe. With a few tens of redshifts per squared comoving megaparsec within the cluster, the caustic technique, on average, recovers the profile of the escape velocity from the cluster with better than 10 percent accuracy up to r~4 r_200. The caustic technique also recovers the mass profile with better than 10 percent accuracy in the range (0.6-4) r_200, but it overestimates the mass up to 70 percent at smaller radii. This overestimate is a consequence of neglecting the radial dependence of the filling function F_beta(r). The 1-sigma uncertainty on individual escape velocity profiles increases from ~20 to ~50 percent when the radius increases from r~0.1 r_200 to ~4 r_200. Individual mass profiles have 1-sigma uncertainty between 40 and 80 percent within the radial range (0.6-4) r_200. We show that the amplitude of these uncertainties is completely due to the assumption of spherical symmetry, which is difficult to drop. Alternatively, we can apply the technique to synthetic clusters obtained by stacking individual clusters: in this case, the 1-sigma uncertainty on the escape velocity profile is smaller than 20 percent out to 4 r_200. The caustic technique thus provides reliable average profiles which extend to regions difficult or impossible to probe with other techniques. Comment: MNRAS accepted, 20 pages

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a new deep determination of the spectroscopic LF within the virial radius of the nearby and massive Abell\,85 (A85) cluster down to the dwarf regime (M* + 6) using VLT/VIMOS spectra for $\sim 2000$ galaxies with m$_r \leq 21$ mag and $\langle \mu_{e,r} \rangle \leq 24$ mag arcsec$^{-2}$. The resulting LF from 438 cluster members is best modelled by a double Schechter function due to the presence of a statistically significant upturn at the faint-end. The amplitude of this upturn ($\alpha_{f} = -1.58^{+0.19}_{-0.15}$), however, is much smaller than that of the SDSS composite photometric cluster LF by Popesso et al. 2006, $\alpha_{f} \sim$ -2. The faint-end slope of the LF in A85 is consistent, within the uncertainties, with that of the field. The red galaxy population dominates the LF at low luminosities, and is the main responsible for the upturn. The fact that the slopes of the spectroscopic LFs in the field and in a cluster as massive as A85 are similar suggests that the cluster environment does not play a major role in determining the abundance of low-mass galaxies.
    Monthly Notices of the Royal Astronomical Society Letters 07/2014; 444(1). DOI:10.1093/mnrasl/slu108 · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We study the mid-infrared (MIR) properties of the galaxies in the A2199 supercluster at z = 0.03 to understand the star formation activity of galaxy groups and clusters in the supercluster environment. Using the Wide-field Infrared Survey Explorer data, we find no dependence of mass-normalized integrated SFRs of galaxy groups/clusters on their virial masses. We classify the supercluster galaxies into three classes in the MIR color-luminosity diagram: MIR blue cloud (massive, quiescent and mostly early-type), MIR star-forming sequence (mostly late-type), and MIR green valley galaxies. These MIR green valley galaxies are distinguishable from the optical green valley galaxies, in the sense that they belong to the optical red sequence. We find that the fraction of each MIR class does not depend on virial mass of each group/cluster. We compare the cumulative distributions of surface galaxy number density and cluster/group-centric distance for the three MIR classes. MIR green valley galaxies show the distribution between MIR blue cloud and MIR SF sequence galaxies. However, if we fix galaxy morphology, early- and late-type MIR green valley galaxies show different distributions. Our results suggest a possible evolutionary scenario of these galaxies: 1) Late-type MIR SF sequence galaxies -> 2) Late-type MIR green valley galaxies -> 3) Early-type MIR green valley galaxies -> 4) Early-type MIR blue cloud galaxies. In this sequence, star formation of galaxies is quenched before the galaxies enter the MIR green valley, and then morphological transformation occurs in the MIR green valley.
    The Astrophysical Journal 12/2014; 800(2). DOI:10.1088/0004-637X/800/2/80 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We use dense redshift surveys of nine galaxy clusters at $z\sim0.2$ to compare the galaxy distribution in each system with the projected matter distribution from weak lensing. By combining 2087 new MMT/Hectospec redshifts and the data in the literature, we construct spectroscopic samples within the region of weak-lensing maps of high (70--89%) and uniform completeness. With these dense redshift surveys, we construct galaxy number density maps using several galaxy subsamples. The shape of the main cluster concentration in the weak-lensing maps is similar to the global morphology of the number density maps based on cluster members alone, mainly dominated by red members. We cross correlate the galaxy number density maps with the weak-lensing maps. The cross correlation signal when we include foreground and background galaxies at 0.5$z_{\rm cl}<z<2z_{\rm cl}$ is $10-23$% larger than for cluster members alone at the cluster virial radius. The excess can be as high as 30% depending on the cluster. Cross correlating the galaxy number density and weak-lensing maps suggests that superimposed structures close to the cluster in redshift space contribute more significantly to the excess cross correlation signal than unrelated large-scale structure along the line of sight. Interestingly, the weak-lensing mass profiles are not well constrained for the clusters with the largest cross correlation signal excesses ($>$20% for A383, A689 and A750). The fractional excess in the cross correlation signal including foreground and background structures could be a useful proxy for assessing the reliability of weak-lensing cluster mass estimates.
    The Astrophysical Journal 10/2014; 797(2). DOI:10.1088/0004-637X/797/2/106 · 6.28 Impact Factor

Full-text (2 Sources)

Available from
May 30, 2014

Similar Publications