Article

Dual role of RASSF1 as a tumor suppressor and an oncogene in neuroendocrine tumors of the lung.

Division of Pathology and Laboratory MedicineEuropean Institute of Oncology and National Cancer Institute, Milan, Italy.
Anticancer research (Impact Factor: 1.71). 10/2010; 30(10):4269-81.
Source: PubMed

ABSTRACT Little is known about the dual role of RAS-association domain family 1 (RASSF1) gene at 3p21.3 in neuroendocrine tumors (NET) of the lung.
Twenty typical carcinoids (TC), 11 atypical carcinoids (ATC), 11 large cell neuroendocrine carcinomas (LCNEC) and 16 small cell lung carcinomas (SCLC) were analyzed for RASSF1 promoter methylation, mRNA and protein expression, and loss of 3p21.3 locus.
Promoter 1 was hypermethylated in NET but not in paired non-neoplastic lung tissues nor in 20 control NSCLC, with the degree of hypermethylation paralleling tumor grade. RASSF1 A/E isoform mRNA but not protein expression was lost in most NET compared to NSCLC or non-neoplastic tissues. The relationship between methylation level and mRNA or protein loss varied by NET type, with significant correlation for decreasing RASSF1 A protein in ACT, and marginal correlation for down-regulated RASSF 1 A/E mRNA in TC, this suggesting a non linear regulation by methylation in NET. No promoter 2 methylation was detected in NET; however, up-regulation of its RASSF1 C transcript emerged as an adverse prognostic factor in the LCNEC/SCLC group. A correlation was found between 3p21.3 allelic loss and decrease of RASSF1 A/E mRNA (p=0.023) and protein (p=0.043) expression in ATC, suggesting that 3p21.3 allelic loss contributed to the loss of gene expression.
RASSF1 A/E is likely to act as a tumor suppressor gene in most pulmonary NET, and RASSF1 C as an oncogene in high-grade tumors.

0 Bookmarks
 · 
98 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Cancer is a complex disease commonly characterized by the disrupted activity of several cancer-related genes such as oncogenes and tumor-suppressor genes. Previous studies suggest that the process of tumor progression to malignancy is dynamic and can be traced by changes in gene expression. Despite the enormous efforts made for differential expression detection and biomarker discovery, few methods have been designed to model the gene expression level to tumor stage during malignancy progression. Such models could help us understand the dynamics and simplify or reveal the complexity of tumor progression. METHODS: We have modeled an on-off state of gene activation per sample then per stage to select gene expression profiles associated to tumor progression. The selection is guided by statistical significance of profiles based on random permutated datasets. RESULTS: We show that our method identifies expected profiles corresponding to oncogenes and tumor suppressor genes in a prostate tumor progression dataset. Comparisons with other methods support our findings and indicate that a considerable proportion of significant profiles is not found by other statistical tests commonly used to detect differential expression between tumor stages nor found by other tailored methods. Ontology and pathway analysis concurred with these findings. CONCLUSIONS: Results suggest that our methodology may be a valuable tool to study tumor malignancy progression, which might reveal novel cancer therapies.
    Theoretical Biology and Medical Modelling 05/2013; 10(1):37. · 1.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Small cell lung cancer (SCLC), a special type of lung cancer, is reputed to carry a poor prognosis. The morbidity of SCLC is increasing in China and other countries. A variety of DNA alterations associated with non-small cell lung cancer (NSCLC) have been described. However, genetic and epigenetic changes of SCLC are not well established. Few studies have demonstrated that epigenetic silencing of key tumor suppressor genes (TSGs) is pivotal to initiation and development of SCLC. Recently, promoter methylation of many TSGs have been identified in SCLC. These novel TSGs are potential tumor biomarkers for early diagnosis and prognostic prediction. Moreover, epigenetic promoter methylation of TSGs could be a target of intervention with a wide prospect of clinical application. This review summarizes recent studies on promoter methylation of TSGs in SCLC and aims to provide better understanding of the promoter methylation in tumorigenesis and progression of SCLC.
    Journal of thoracic disease. 08/2013; 5(4):532-7.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: RASSF1C is a major isoform of the RASSF1 gene, and is emerging as an oncogene. This is in contradistinction to the RASSF1A isoform, which is an established tumor suppressor. We have previously shown that RASSF1C promotes lung cancer cell proliferation and have identified RASSF1C target genes with growth promoting functions. Here, we further report that RASSF1C promotes lung cancer cell migration and enhances lung cancer cell tumor sphere formation. We also show that RASSF1C over-expression reduces the inhibitory effects of the anti-cancer agent, betulinic acid (BA), on lung cancer cell proliferation. In previous work, we demonstrated that RASSF1C up-regulates piwil1 gene expression, which is a stem cell self-renewal gene that is over-expressed in several human cancers, including lung cancer. Here, we report on the effects of BA on piwil1 gene expression. Cells treated with BA show decreased piwil1 expression. Also, interaction of IGFBP-5 with RASSF1C appears to prevent RASSF1C from up-regulating PIWIL1 protein levels. These findings suggest that IGFBP-5 may be a negative modulator of RASSF1C/ PIWIL1 growth-promoting activities. In addition, we found that inhibition of the ATM-AMPK pathway up-regulates RASSF1C gene expression.
    PLoS ONE 01/2014; 9(7):e101679. · 3.73 Impact Factor

Full-text

View
24 Downloads
Available from
Jun 2, 2014