High-Fat-Diet-Induced Obesity and Heart Dysfunction Are Regulated by the TOR Pathway in Drosophila

NASCR Center, Sanford/Burnham Medical Research Institute, La Jolla, CA 92037, USA.
Cell metabolism (Impact Factor: 17.57). 11/2010; 12(5):533-44. DOI: 10.1016/j.cmet.2010.09.014
Source: PubMed


High-fat-diet (HFD)-induced obesity is a major contributor to diabetes and cardiovascular disease, but the underlying genetic mechanisms are poorly understood. Here, we use Drosophila to test the hypothesis that HFD-induced obesity and associated cardiac complications have early evolutionary origins involving nutrient-sensing signal transduction pathways. We find that HFD-fed flies exhibit increased triglyceride (TG) fat and alterations in insulin/glucose homeostasis, similar to mammalian responses. A HFD also causes cardiac lipid accumulation, reduced cardiac contractility, conduction blocks, and severe structural pathologies, reminiscent of diabetic cardiomyopathies. Remarkably, these metabolic and cardiotoxic phenotypes elicited by HFD are blocked by inhibiting insulin-TOR signaling. Moreover, reducing insulin-TOR activity (by expressing TSC1-2, 4EBP or FOXO), or increasing lipase expression-only within the myocardium-suffices to efficiently alleviate cardiac fat accumulation and dysfunction induced by HFD. We conclude that deregulation of insulin-TOR signaling due to a HFD is responsible for mediating the detrimental effects on metabolism and heart function.

Download full-text


Available from: Karen Ocorr,
    • "ACCEPTED MANUSCRIPT 12 tissue [62] "
    [Show abstract] [Hide abstract]
    ABSTRACT: The dysregulation of lipid metabolism has been implicated in various diseases, including diabetes, cardiopathies, dermopathies, retinal and neurodegenerative diseases. Mouse models have provided insights into lipid metabolism. However, progress in the understanding of these pathologies is hampered by the multiplicity of essential cellular processes and genes that modulate lipid metabolism. Drosophila and C. elegans have emerged as simple genetic models to improve our understanding of these metabolic diseases. Recent studies have characterized fatty acid transport protein (fatp) mutants in Drosophila and C. elegans, establishing new models of cardiomyopathy, retinal degeneration, fat storage disease and dermopathies. These models have generated novel insights into the physiological role of the Fatp protein family in vivo in multicellular organisms, and are likely to contribute substantially to progress in understanding the etiology of various metabolic disorders. Here, we describe and discuss the mechanisms underlying invertebrate fatp mutant models in the light of the current knowledge relating to FATPs and lipid disorders in vertebrates.
    Progress in lipid research 09/2015; 60. DOI:10.1016/j.plipres.2015.08.001 · 10.02 Impact Factor
  • Source
    • "Although the correlation between temperature and heart rate has been demonstrated in several insect orders, most of what we know about the effect of diet on heart physiology comes from studies done on the fruit fly, Drosophila melanogaster. In this fly species, balanced low calorie diets result in lower myocardial lipid levels and increased cardiac performance (Bazzell et al., 2013; Birse et al., 2010; Lim et al., 2011), whereas diets that are high in sugar induce cardiomyopathy (Na et al., 2013). In Periplaneta americana nymphs, food deprivation does not induce noticeable changes in heart physiology, but food deprivation in aquatic Anopheles quadrimaculatus larvae results in a decrease in the heart rate (Jones, 1956, 1977). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Adult female mosquitoes rely on carbohydrate-rich plant nectars as their main source of energy. In the present study we tested whether the deprivation of a carbohydrate dietary source or the deprivation of both carbohydrate and water affects mosquito heart physiology. Intravital video imaging of Anopheles gambiae showed that, relative to sucrose fed mosquitoes, the deprivation of both sucrose and water for 24 h, but not the deprivation of sucrose alone, reduces the heart contraction rate. Measurement of the protein, carbohydrate and lipid content of mosquitoes in the three treatment groups did not explain this cardiac phenotype. However, while the deprivation of sucrose reduced mosquito weight and abdominal width, the deprivation of both sucrose and water reduced mosquito weight even further without augmenting the change in abdominal width, indirectly suggesting that starvation and dehydration reduces hemolymph pressure. Analysis of the mRNA levels of crustacean cardioactive peptide (CCAP), FMRFamide, corazonin, neuropeptide F and short neuropeptide F then suggested that these neuropeptides do not regulate the cardiac phenotype observed. However, relative to sucrose fed and sucrose deprived mosquitoes, the mRNA level of nitric oxide synthase (NOS) was significantly elevated in mosquitoes that had been deprived of both sucrose and water. Given that nitric oxide suppresses the heart rate of vertebrates and invertebrates, these data suggest a role for this free radical in modulating mosquito heart physiology. Copyright © 2015. Published by Elsevier Ltd.
    Journal of Insect Physiology 01/2015; 74. DOI:10.1016/j.jinsphys.2015.01.011 · 2.47 Impact Factor
  • Source
    • "Please also see Figure S7. Immunity 42, 133–144, January 20, 2015 ª2015 The Authors 141 42%; polyunsaturated, 9.5%; salt, nil; fiber, nil; Sainsbury's Basics Lard) in a weight-for-volume manner as described by Birse et al. (Birse et al., 2010), at either 6.3% or 15%. All experiments were carried out using the 15% lardenriched diet except for experiments shown in Figures 3B and 3D, where a 6.3% lard-enriched diet was used. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Long-term consumption of fatty foods is associated with obesity, macrophage activation and inflammation, metabolic imbalance, and a reduced lifespan. We took advantage of Drosophila genetics to investigate the role of macrophages and the pathway(s) that govern their response to dietary stress. Flies fed a lipid-rich diet presented with increased fat storage, systemic activation of JAK-STAT signaling, reduced insulin sensitivity, hyperglycemia, and a shorter lifespan. Drosophila macrophages produced the JAK-STAT-activating cytokine upd3, in a scavenger-receptor (crq) and JNK-dependent manner. Genetic depletion of macrophages or macrophage-specific silencing of upd3 decreased JAK-STAT activation and rescued insulin sensitivity and the lifespan of Drosophila, but did not decrease fat storage. NF-κB signaling made no contribution to the phenotype observed. These results identify an evolutionarily conserved "scavenger receptor-JNK-type 1 cytokine" cassette in macrophages, which controls glucose metabolism and reduces lifespan in Drosophila maintained on a lipid-rich diet via activation of the JAK-STAT pathway. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
    Immunity 12/2014; 42(1). DOI:10.1016/j.immuni.2014.12.023 · 21.56 Impact Factor
Show more