Article

A replication defective recombinant Ad5 vaccine expressing Ebola virus GP is safe and immunogenic in healthy adults

Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892-3017, United States.
Vaccine (Impact Factor: 3.49). 10/2010; 29(2):304-13. DOI: 10.1016/j.vaccine.2010.10.037
Source: PubMed

ABSTRACT Ebola virus causes irregular outbreaks of severe hemorrhagic fever in equatorial Africa. Case mortality remains high; there is no effective treatment and outbreaks are sporadic and unpredictable. Studies of Ebola virus vaccine platforms in non-human primates have established that the induction of protective immunity is possible and safety and human immunogenicity has been demonstrated in a previous Phase I clinical trial of a 1st generation Ebola DNA vaccine. We now report the safety and immunogenicity of a recombinant adenovirus serotype 5 (rAd5) vaccine encoding the envelope glycoprotein (GP) from the Zaire and Sudan Ebola virus species, in a randomized, placebo-controlled, double-blinded, dose escalation, Phase I human study. Thirty-one healthy adults received vaccine at 2×10(9) (n=12), or 2×10(10) (n=11) viral particles or placebo (n=8) as an intramuscular injection. Antibody responses were assessed by ELISA and neutralizing assays; and T cell responses were assessed by ELISpot and intracellular cytokine staining assays. This recombinant Ebola virus vaccine was safe and subjects developed antigen specific humoral and cellular immune responses.

2 Followers
 · 
262 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: While several impeding factors have limited Ebola vaccine development, the current epidemic has provided a surge which may lead to a record pace for a vaccine against Ebola. Consequently, multiple FDA trials are currently underway using two promising vaccine platforms; one has recently demonstrated durable immunity within non-human primates. Copyright © 2014 Elsevier Ltd. All rights reserved.
    Trends in Microbiology 12/2014; 23(2). DOI:10.1016/j.tim.2014.12.005 · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The recent outbreak of the human Zaire ebolavirus (EBOV) epidemic is spiraling out of control in West Africa. Human EBOV hemorrhagic fever has a case fatality rate of up to 90%. The EBOV is classified as a biosafety level 4 pathogen and is considered a category A agent of bioterrorism by Centers for Disease Control and Prevention, with no approved therapies and vaccines available for its treatment apart from supportive care. Although several promising therapeutic agents and vaccines against EBOV are undergoing the Phase I human trial, the current epidemic might be outpacing the speed at which drugs and vaccines can be produced. Like all viruses, the EBOV largely relies on host cell factors and physiological processes for its entry, replication, and egress. We have reviewed currently available therapeutic agents that have been shown to be effective in suppressing the proliferation of the EBOV in cell cultures or animal studies. Most of the therapeutic agents in this review are directed against non-mutable targets of the host, which is independent of viral mutation. These medications are approved by the Food and Drug Administration (FDA) for the treatment of other diseases. They are available and stockpileable for immediate use. They may also have a complementary role to those therapeutic agents under development that are directed against the mutable targets of the EBOV.
  • [Show abstract] [Hide abstract]
    ABSTRACT: With the Ebola epidemic raging out of control in West Africa, there has been a flurry of research into the Ebola virus, resulting in the generation of much genomic data. In response to the clear need for tools that integrate multiple strands of research around molecular sequences, we have created the University of California Santa Cruz (UCSC) Ebola Genome Browser, an adaptation of our popular UCSC Genome Browser web tool, which can be used to view the Ebola virus genome sequence from GenBank and nearly 30 annotation tracks generated by mapping external data to the reference sequence. Significant annotations include a multiple alignment comprising 102 Ebola genomes from the current outbreak, 56 from previous outbreaks, and 2 Marburg genomes as an outgroup; a gene track curated by NCBI; protein annotations curated by UniProt and antibody-binding epitopes curated by IEDB. We have extended the Genome Browser's multiple alignment color-coding scheme to distinguish mutations resulting from non-synonymous coding changes, synonymous changes, or changes in untranslated regions. Our Ebola Genome portal at http://genome.ucsc.edu/ebolaPortal/ links to the Ebola virus Genome Browser and an aggregate of useful information, including a collection of Ebola antibodies we are curating.