Systemic treatment with liver X receptor agonists raises apolipoprotein E, cholesterol, and amyloid-β peptides in the cerebral spinal fluid of rats.

Department of Neurosymptomatic Disorders, Merck Research Laboratories, West Point, PA 19486, USA. .
Molecular Neurodegeneration (Impact Factor: 5.29). 10/2010; 5:44. DOI: 10.1186/1750-1326-5-44
Source: PubMed

ABSTRACT Apolipoprotein E (apoE) is a major cholesterol transport protein found in association with brain amyloid from Alzheimer's disease (AD) patients and the ε4 allele of apoE is a genetic risk factor for AD. Previous studies have shown that apoE forms a stable complex with amyloid β (Aβ) peptides in vitro and that the state of apoE lipidation influences the fate of brain Aβ, i.e., lipid poor apoE promotes Aβ aggregation/deposition while fully lipidated apoE favors Aβ degradation/clearance. In the brain, apoE levels and apoE lipidation are regulated by the liver X receptors (LXRs).
We investigated the hypothesis that increased apoE levels and lipidation induced by LXR agonists facilitates Aβ efflux from the brain to the cerebral spinal fluid (CSF). We also examined if the brain expression of major apoE receptors potentially involved in apoE-mediated Aβ clearance was altered by LXR agonists. ApoE, cholesterol, Aβ40, and Aβ42 levels were all significantly elevated in the CSF of rats after only 3 days of treatment with LXR agonists. A significant reduction in soluble brain Aβ40 levels was also detected after 6 days of LXR agonist treatment.
Our novel findings suggest that central Aβ lowering caused by LXR agonists appears to involve an apoE/cholesterol-mediated transport of Aβ to the CSF and that differences between the apoE isoforms in mediating this clearance pathway may explain why individuals carrying one or two copies of APOE ε4 have increased risk for AD.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The hepatic low-density lipoprotein receptor (LDLR) pathway is essential for clearing circulating LDL and is an important therapeutic target for treating cardiovascular disease. Abundance of the LDLR is subject to both transcriptional and nontranscriptional control. Here, we highlight a new post-transcriptional mechanism for controlling LDLR function via ubiquitination of the receptor by the E3-ubiquitin ligase inducible degrader of the LDLR (IDOL). IDOL is a recently identified transcriptional target of the liver X receptors. Acting as an E3-ubiquitin ligase IDOL promotes ubiquitination of the LDLR, thereby marking it for lysosomal degradation. The determinants required for degradation of the LDLR by IDOL have been largely identified. IDOL also targets two related lipoprotein receptors, the very low-density lipoprotein receptor and apolipoprotein E receptor 2. Despite several similarities, the IDOL, and PCSK9 pathways for controlling LDLR abundance seem independent of each other. Genome-wide association studies have recently identified IDOL as a locus influencing variability in circulating levels of LDL, thereby highlighting the possible role of IDOL in human lipoprotein metabolism. Transcriptional induction of IDOL by liver X receptor defines a new post-transcriptional pathway for controlling LDLR abundance and LDL uptake independent of sterol regulatory element binding proteins. Targeting IDOL activity may offer a novel therapeutic approach complementary to statins for treating cardiovascular disease.
    Current opinion in lipidology 04/2012; 23(3):213-9. · 5.80 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) is a neurodegenerative process characterized, in part, by the accumulation of beta-amyloid proteins (Aβ) in the brain. Evidence now suggests that the excessive Aβ accumulation is the result of impaired clearance from the brain. Recent studies have indicated that retinoid X receptor (RXR) activation stimulates the metabolic clearance of Aβ and rapidly reverses Aβ-induced behavioral deficits, doing so in an apoE-dependent manner. Previously, we reported that soluble apoE (i.e., not bound to Aβ) facilitated Aβ transit across the blood-brain barrier (BBB). As Aβ clearance from the brain involves both metabolic and BBB-mediated processes, the current studies investigated the impact of RXR stimulation on Aβ clearance across the BBB. Treatment with RXR agonists increased Aβ clearance across the BBB both in vitro and in vivo. Moreover, this processes appeared to involve apoE as RXR agonism did not stimulate Aβ BBB clearance when apoE was absent. Thus, RXR activation could mitigate Aβ brain burden by promoting both the metabolic and BBB clearance of Aβ, offering a novel approach to the treatment of AD.
    Journal of Molecular Neuroscience 08/2012; · 2.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The structural integrity of cerebral vessels is compromised during ageing. Abnormal amyloid (Aβ) deposition in the vasculature can accelerate age-related pathologies. The cerebrovascular response associated with ageing and microvascular Aβ deposition was defined using quantitative label-free shotgun proteomic analysis. Over 650 proteins were quantified in vessel-enriched fractions from the brains of 3 and 9 month-old wild-type (WT) and Tg-SwDI mice. Sixty-five proteins were significantly increased in older WT animals and included several basement membrane proteins (nidogen-1, basement membrane-specific heparan sulfate proteoglycan core protein, laminin subunit gamma-1 precursor and collagen alpha-2(IV) chain preproprotein). Twenty-four proteins were increased and twenty-one decreased in older Tg-SwDI mice. Of these, increases in Apolipoprotein E (APOE) and high temperature requirement serine protease-1 (HTRA1) and decreases in spliceosome and RNA-binding proteins were the most prominent. Only six shared proteins were altered in both 9-month old WT and Tg-SwDI animals. The age-related proteomic response in the cerebrovasculature was distinctly different in the presence of microvascular Aβ deposition. Proteins found differentially expressed within the WT and Tg-SwDI animals give greater insight to the mechanisms behind age-related cerebrovascular dysfunction and pathologies and may provide novel therapeutic targets.
    PLoS ONE 02/2014; 9(2):e89970. · 3.53 Impact Factor

Full-text (3 Sources)

Available from
May 30, 2014