Article

Combined use of neuroradiology and 1H-MR spectroscopy may provide an intervention limiting diagnosis of glioblastoma multiforme.

Academic Neurosurgery Unit, St George's University of London, London, United Kingdom.
Journal of Magnetic Resonance Imaging (Impact Factor: 2.57). 11/2010; 32(5):1038-44. DOI: 10.1002/jmri.22350
Source: PubMed

ABSTRACT To evaluate the accuracy of (1)H-MR spectroscopy ((1)H-MRS) as an intervention limiting diagnostic tool for glioblastoma multiforme. GBM is the most common and aggressive primary brain tumor, with mean survival under a year. Oncological practice currently requires histopathological diagnosis before radiotherapy.
Eighty-nine patients had clinical computed tomography (CT) and MR imaging and 1.5T SV SE (1)H-MRS with PRESS localization for neuroradiological diagnosis and tumor classification with spectroscopic and automated pattern recognition analysis (TE 30 ms, TR 2000 ms, spectral width 2500 Hz and 2048 data points, 128-256 signal averages were acquired, depending on voxel size (8 cm(3) to 4 cm(3)). Eighteen patients from a cohort of 89 underwent stereotactic biopsy.
The 18 stereotactic biopsies revealed 14 GBM, 2 grade II astrocytomas, 1 lymphoma, and 1 anaplastic astrocytoma. All 14 biopsied GBMs were diagnosed as GBM by a protocol combining an individual radiologist and an automated spectral pattern recognition program.
In patients undergoing stereotactic biopsy combined neuroradiological and spectroscopic evaluation diagnoses GBM with accuracy that could replace the need for biopsy. We do not advocate the replacement of biopsy in all patients; instead our data suggest a specific intervention limiting role for the use of (1)H-MRS in brain tumor diagnosis.

0 Bookmarks
 · 
88 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was to evaluate whether single-voxel (1)H MRS could add useful information to conventional MRI in the preoperative characterisation of the type and grade of brain tumours. MRI and MRS examinations from a prospective cohort of 40 consecutive patients were analysed double blind by radiologists and spectroscopists before the histological diagnosis was known. The spectroscopists had only the MR spectra, whereas the radiologists had both the MR images and basic clinical details (age, sex and presenting symptoms). Then, the radiologists and spectroscopists exchanged their predictions and re-evaluated their initial opinions, taking into account the new evidence. Spectroscopists used four different systems of analysis for (1)H MRS data, and the efficacy of each of these methods was also evaluated. Information extracted from (1)H MRS significantly improved the radiologists' MRI-based characterisation of grade IV tumours (glioblastomas, metastases, medulloblastomas and lymphomas) in the cohort [area under the curve (AUC) in the MRI re-evaluation 0.93 versus AUC in the MRI evaluation 0.85], and also of the less malignant glial tumours (AUC in the MRI re-evaluation 0.93 versus AUC in the MRI evaluation 0.81). One of the MRS analysis systems used, the INTERPRET (International Network for Pattern Recognition of Tumours Using Magnetic Resonance) decision support system, outperformed the others, as well as being better than the MRI evaluation for the characterisation of grade III astrocytomas. Thus, preoperative MRS data improve the radiologists' performance in diagnosing grade IV tumours and, for those of grade II-III, MRS data help them to recognise the glial lineage. Even in cases in which their diagnoses were not improved, the provision of MRS data to the radiologists had no negative influence on their predictions.
    NMR in Biomedicine 09/2011; 25(4):661-73. · 3.45 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Imaging is a key component in the management of brain tumours, with MRI being the preferred modality for most clinical scenarios. However, although conventional MRI provides mainly structural information, such as tumour size and location, it leaves many important clinical questions, such as tumour type, aggressiveness and prognosis, unanswered. An increasing number of studies have shown that additional information can be obtained using functional imaging methods (which probe tissue properties), and that these techniques can give key information of clinical importance. These techniques include diffusion imaging, which can assess tissue structure, and perfusion imaging and magnetic resonance spectroscopy, which measures tissue metabolite profiles. Tumour metabolism can also be investigated using PET, with 18F-deoxyglucose being the most readily available tracer. This Review discusses these methods and the studies that have investigated their clinical use. A strong emphasis is placed on the measurement of quantitative parameters, which is a move away from the qualitative nature of conventional radiological reporting and presents major challenges, particularly for multicentre studies.
    Nature Reviews Clinical Oncology 11/2012; · 15.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In recent years, advanced magnetic resonance imaging (MRI) techniques, such as magnetic resonance spectroscopy, diffusion weighted imaging, diffusion tensor imaging and perfusion weighted imaging have been used in order to resolve demanding diagnostic problems such as brain tumor characterization and grading, as these techniques offer a more detailed and non-invasive evaluation of the area under study. In the last decade a great effort has been made to import and utilize intelligent systems in the so-called clinical decision support systems (CDSS) for automatic processing, classification, evaluation and representation of MRI data in order for advanced MRI techniques to become a part of the clinical routine, since the amount of data from the aforementioned techniques has gradually increased. Hence, the purpose of the current review article is two-fold. The first is to review and evaluate the progress that has been made towards the utilization of CDSS based on data from advanced MRI techniques. The second is to analyze and propose the future work that has to be done, based on the existing problems and challenges, especially taking into account the new imaging techniques and parameters that can be introduced into intelligent systems to significantly improve their diagnostic specificity and clinical application.
    World journal of radiology. 04/2014; 6(4):72-81.