Article

In vivo imaging of retrogradely transported synaptic vesicle proteins in Caenorhabditis elegans neurons.

Neurobiology, NCBS-TIFR, Bellary Road, Bangalore 560065, India.
Traffic (Impact Factor: 4.71). 10/2010; 12(1):89-101. DOI: 10.1111/j.1600-0854.2010.01127.x
Source: PubMed

ABSTRACT Axonal transport is an essential process that carries cargoes in the anterograde direction to the synapse and in the retrograde direction back to the cell body. We have developed a novel in vivo method to exclusively mark and dynamically track retrogradely moving compartments carrying specific endogenous synaptic vesicle proteins in the Caenorhabditis elegans model. Our method is based on the uptake of a fluorescently labeled anti-green fluorescent protein (GFP) antibody delivered in an animal expressing the synaptic vesicle protein synaptobrevin-1::GFP in neurons. We show that this method largely labels retrogradely moving compartments. Very little labeling is observed upon blocking vesicle exocytosis or if the synapse is physically separated from the cell body. The extent of labeling is also dependent on the dyenin-dynactin complex. These data support the interpretation that the labeling of synaptobrevin-1::GFP largely occurs after vesicle fusion and the major labeling likely takes place at the synapse. Further, we observe that the retrograde compartment carrying synaptobrevin contains synaptotagmin but lacks the endosomal marker RAB-5. This labeling method is very general and can be readily adapted to any transmembrane protein on synaptic vesicles with a GFP tag inside the vesicle and can also be extended to other model systems.

0 Followers
 · 
92 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Understanding the mechanisms of axon regeneration is of great importance to the development of therapeutic treatments for spinal cord injury or stroke. Axon regeneration has long been studied in diverse vertebrate and invertebrate models, but until recently had not been analyzed in the genetically tractable model organism Caenorhabditis elegans. The small size, simple neuroanatomy, and transparency of C. elegans allows single fluorescently labeled axons to be severed in live animals using laser microsurgery. Many neurons in C. elegans are capable of regenerative regrowth, and can in some cases re-establish functional connections. Large-scale genetic screens have begun to elucidate the genetic basis of axon regrowth.
    Trends in cell biology 09/2011; 21(10):577-84. DOI:10.1016/j.tcb.2011.08.003 · 12.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Immunofluorescence microscopy is a powerful technique that is widely used by researchers to assess both the localization and endogenous expression levels of their favorite proteins. The application of this approach to C. elegans, however, requires special methods to overcome the diffusion barrier of a dense, collagen-based outer cuticle. This chapter outlines several alternative fixation and permeabilization strategies for overcoming this problem and for producing robust immunohistochemical staining of both whole animals and freeze-fractured samples. In addition, we provide an accounting of widely used antibody reagents available to the research community. We also describe several approaches aimed at reducing non-specific background often associated with immunohistochemical studies. Finally, we discuss a variety of approaches to raise antisera directed against C. elegans antigens.
    Methods in cell biology 01/2012; 107:35-66. DOI:10.1016/B978-0-12-394620-1.00002-3 · 1.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Over the past decade the application of gene therapy of retinal diseases such as glaucoma has produced promising results. However, optic nerve regeneration and restoration of vision in patients with glaucoma is still far from reality. Neuroprotective approaches in the form of gene therapy may provide significant advantages, but are still limited by many factors both at the organ and cellular levels. In general, gene delivery systems for eye diseases range from simple eye drops and ointments to more advanced bio- and nanotechnology-based systems such as muco-adhesive systems, polymers, liposomes and ocular inserts. Most of these technologies were developed for front-of-the-eye ophthalmic therapies and are not applicable as back-of-the-eye delivery systems. Currently, only the invasive intravitreal injections are capable of successfully delivering genes to the retina. Here we review the challenges and possible strategies for the noninvasive gene therapy of glaucoma including the barriers in the eye and in neural cells, and present a cross-sectional view of gene delivery as it pertains to the prevention and treatment of glaucoma.
    Nanomedicine 07/2012; 7(7):1067-83. DOI:10.2217/nnm.12.69 · 5.82 Impact Factor

Preview

Download
0 Downloads