Article

Animal models of typical heterotopic ossification.

Department of Neurology, Northwestern University Feinberg Medical School, 303 East Chicago Avenue, Chicago, IL 60611, USA.
BioMed Research International (Impact Factor: 2.71). 01/2011; 2011:309287. DOI: 10.1155/2011/309287
Source: PubMed

ABSTRACT Heterotopic ossification (HO) is the formation of marrow-containing bone outside of the normal skeleton. Acquired HO following traumatic events is a common and costly clinical complication. In contrast, hereditary HO is rarer, progressive, and life-threatening. Substantial effort has been directed towards understanding the mechanisms underlying HO and finding efficient treatments. However, one crucial limiting factor has been the lack of relevant animal models. This article reviews the major currently available animal models, summarizes some of the insights gained from these studies, and discusses the potential future challenges and directions in HO research.

0 Bookmarks
 · 
139 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: OBJECTIVE:: To demonstrate the pro-osteogenic effect of burn injury on heterotopic bone formation using a novel burn ossicle in vivo model. BACKGROUND:: Heterotopic ossification (HO), or the abnormal formation of bone in soft tissue, is a troubling sequela of burn and trauma injuries. The exact mechanism by which burn injury influences bone formation is unknown. The aim of this study was to develop a mouse model to study the effect of burn injury on heterotopic bone formation. We hypothesized that burn injury would enhance early vascularization and subsequent bone formation of subcutaneously implanted mesenchymal stem cells. METHODS:: Mouse adipose-derived stem cells were harvested from C57/BL6 mice, transfected with a BMP-2 adenovirus, seeded on collagen scaffolds (ossicles), and implanted subcutaneously in the flank region of 8 adult mice. Burn and sham groups were created with exposure of 30% surface area on the dorsum to 60°C water or 30°C water for 18 seconds, respectively (n = 4/group). Heterotopic bone volume was analyzed in vivo by micro-computed tomography for 3 months. Histological analysis of vasculogenesis was performed with platelet endothelial cell adhesion molecule staining. Osteogenic histological analysis was performed by Safranin O, Picrosirius red, and aniline blue staining. Qualitative analysis of heterotopic bone composition was completed with ex vivo Raman spectroscopy. RESULTS:: Subcutaneously implanted ossicles formed heterotopic bone. Ossicles from mice with burn injuries developed significantly more bone than sham control mice, analyzed by micro-computed tomography at 1, 2, and 3 months (P < 0.05), and had enhanced early and late endochondral ossification as demonstrated by Safranin O, Picrosirius red, and aniline blue staining. In addition, burn injury enhanced vascularization of the ossicles (P < 0.05). All ossicles demonstrated chemical composition characteristic of bone as demonstrated by Raman spectroscopy. CONCLUSIONS:: Burn injury increases the predilection to osteogenic differentiation of ectopically implanted ossicles. Early differences in vascularity correlated with later bone development. Understanding the role of burn injury on heterotopic bone formation is an important first step toward the development of treatment strategies aimed to prevent unwanted and detrimental heterotopic bone formation.
    Annals of surgery 05/2013; · 7.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Proliferation and fusion of myoblasts is a well-orchestrated process occurring during muscle development and regeneration. Although myoblasts are known to originate from muscle satellite cells, the molecular mechanisms that coordinate their commitment toward differentiation are poorly understood. Here, we present a novel role for the transcription factor Forkhead box protein C2 (Foxc2) in regulating proliferation and preventing premature differentiation of activated muscle satellite cells. We demonstrate that Foxc2 expression is upregulated early in activated mouse muscle satellite cells and then diminishes during myogenesis. In undifferentiated C2C12 myoblasts, downregulation of endogenous Foxc2 expression leads to a decrease in proliferation, whereas forced expression of FOXC2 sustains proliferation and prevents differentiation into myotubes. We also show that FOXC2 induces Wnt signaling by direct interaction with the Wnt4 (wingless-type MMTV integration site family member-4) promoter region. The resulting elevated expression of bone morphogenetic protein-4 (Bmp4) and RhoA-GTP proteins inhibits the proper myoblast alignment and fusion required for myotube formation. Interestingly, continuous forced expression of FOXC2 alters the commitment of C2C12 myoblasts toward osteogenic differentiation, which is consistent with FOXC2 expression observed in patients with myositis ossificans, an abnormal bone growth within muscle tissue. In summary, our results suggest that (a) Foxc2 regulates the proliferation of multipotent muscle satellite cells; (b) downregulation of Foxc2 is critical for myogenesis to progress; and (c) sustained Foxc2 expression in myoblast cells suppresses myogenesis and alters their lineage commitment toward osteogenesis by inducing the Wnt4 and Bmp4 signaling pathways.Cell Death and Differentiation advance online publication, 3 May 2013; doi:10.1038/cdd.2013.34.
    Cell death and differentiation 05/2013; · 8.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Celecoxib, a selective cox-2 inhibitor, has been shown to prevent the heterotopic ossification following total hip arthroplasty. However, the effects of celecoxib on heterotopic ossification at other locations remain unclear. This study aimed to investigate the effect of celecoxib on heterotopic ossification in the rat model with Achilles tenotomy. Forty male Sprague-Dawley rats, which were randomly divided into 2 groups (n = 20), underwent midpoint Achilles tenotomy on left legs through a posterior approach under aseptic condition. Experimental group was treated with the saline solution of celecoxib (10 mg/kg) per day, while control group was treated by normal saline (0.9%). At 3, 5 and 10 postoperative weeks, all animals were examined by X-ray to assess new bone formation in the Achilles tendon. At 10 weeks after surgery, all animals were killed and Achilles tendons were taken for hematoxylin-eosin (HE) and immunohistochemical staining. Heterotopic ossification developed in 3 rats (15%) in experimental group and 20 rats (100%) in control group by postoperative 10 weeks. The incidence of heterotopic ossification was significantly lower in experimental group than in control group (P < 0.05). Our findings suggest that celecoxib inhibits HO development in rat model with Achilles tenotomy.
    European Journal of Orthopaedic Surgery & Traumatology 02/2013; 23(2):145-8. · 0.18 Impact Factor

Full-text (3 Sources)

Download
46 Downloads
Available from
May 30, 2014