Article

Breaking Barriers in the Genomics and Pharmacogenetics of Drug Addiction

Centre for Addiction & Mental Health, Department of Psychiatry, Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.
Clinical Pharmacology &#38 Therapeutics (Impact Factor: 7.39). 10/2010; 88(6):779-91. DOI: 10.1038/clpt.2010.175
Source: PubMed

ABSTRACT Drug addiction remains a substantial health issue with limited treatment options currently available. Despite considerable advances in the understanding of human genetic architecture, the genetic underpinning of complex disorders remains elusive. On the basis of our current understanding of neurobiology, numerous candidate genes have been implicated in the etiology and response to treatment for different addictions. Genome-wide association (GWA) studies have also identified novel targets. However, replication of these studies is often lacking, and this complicates interpretation. The situation is expected to improve as issues such as phenotypic characterization, the apparent "missing heritability," the identification of functional variants, and possible gene-environment (G × E) interactions are addressed. In addition, there is growing evidence that genetic information can be useful in refining the choice of addiction treatment. As genetic testing becomes more common in the practice of medicine, a variety of ethical and practical challenges, some of which are unique to drug addiction, will also need to be considered.

Full-text

Available from: Jaakko Kaprio, Sep 14, 2014
0 Followers
 · 
98 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Both nicotine and alcohol addictions are severe public health hazards worldwide. Various twin and family studies have demonstrated that genetic factors contribute to vulnerability to these addictions; however, the susceptibility genes and the variants underlying them remain largely unknown. Of susceptibility genes investigated for addictions, DRD2 has received much attention. Considering new evidence supporting the association of DRD2 and its adjacent gene ankyrin repeat and kinase domain containing 1 (ANKK1) with various addictions, in this paper, we provide an updated view of the involvement of variants in DRD2 and ANKK1 in the etiology of nicotine dependence (ND) and alcohol dependence (AD) based on linkage, association, and molecular studies. This evidence shows that both genes are significantly associated with addictions; however the association with ANKK1 appears to be stronger. Thus, both more replication studies in independent samples and functional studies of some of these variants are warranted.
    Molecular Neurobiology 08/2014; 51(1). DOI:10.1007/s12035-014-8826-2 · 5.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Drug liking versus drug disliking is a subjective motivational measure in humans that assesses the addiction liability of drugs. Variation in this trait is hypothesized to influence vulnerability versus resilience toward substance abuse disorders and likely contains a genetic component. In rodents and humans, conditioned place preference (CPP) / aversion (CPA) is a Pavlovian conditioning paradigm whereby a learned preference for the drug-paired environment is used to infer drug liking whereas a learned avoidance or aversion is used to infer drug disliking. C57BL/6 inbred mouse substrains are nearly genetically identical, yet demonstrate robust differences in addiction-relevant behaviors, including locomotor sensitization to cocaine and consumption of ethanol. Here, we tested the hypothesis that B6 substrains would demonstrate differences in the rewarding properties of the mu opioid receptor agonist oxycodone (5 mg/kg, i.p.) and the aversive properties of the opioid receptor antagonist naloxone (4 mg/kg, i.p.). Both substrains showed similar degrees of oxycodone-induced CPP; however, there was a three-fold enhancement of naloxone-induced CPA in agonist-naïve C57BL/6J relative to C57Bl/6NJ mice. Exploratory factor analysis of CPP and CPA identified unique factors that explain variance in behavioral expression of reward versus aversion. “Conditioned Opioid-Like Behavior” was a reward-based factor whereby drug-free locomotor variables resembling opioid treatment co-varied with the degree of CPP. “Avoidance and Freezing” was an aversion-based factor, whereby the increase in the number of freezing bouts co-varied with the degree of aversion. These results provide new insight into the behavioral architecture of the motivational properties of opioids. Future studies will use quantitative trait locus mapping in B6 substrains to identify novel genetic factors that contribute to the marked strain difference in NAL-CPA.
    Frontiers in Behavioral Neuroscience 12/2014; accepted. DOI:10.3389/fnbeh.2014.00450 · 4.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite advances in characterizing genetic influences on addiction liability and treatment response, clinical applications of these efforts have been slow to evolve. Although challenges to clinical translation remain, stakeholders already face decisions about evidentiary thresholds for the uptake of pharmacogenetic tests in practice. There is optimism about potential pharmacogenetic applications for the treatment of alcohol use disorders, with particular interest in the OPRM1 A118G polymorphism as a moderator of naltrexone response. Findings from human and animal studies suggest preliminary evidence for the clinical validity of this association; on this basis, arguments for clinical implementation can be made in accordance with existing frameworks for the uptake of genomic applications. However, generating evidence-based guidelines requires evaluating the clinical utility of pharmacogenetic tests. This goal will remain challenging, largely due to minimal data to inform clinical utility estimates. The pace of genomic discovery highlights the need for clinical utility and implementation research to inform future translation efforts. Near-term implementation of promising pharmacogenetic tests can help expedite this goal, generating an evidence base to enable efficient translation as additional gene-drug associations are discovered.
    Addiction science & clinical practice 09/2014; 9(1):20. DOI:10.1186/1940-0640-9-20