Article

The Effect of St John's Wort on the Pharmacodynamic Response of Clopidogrel in Hyporesponsive Volunteers and Patients: Increased Platelet Inhibition by Enhancement of CYP3A4 Metabolic Activity

Cardiovascular Center, Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48109-5861, USA.
Journal of cardiovascular pharmacology (Impact Factor: 2.11). 10/2010; 57(1):86-93. DOI: 10.1097/FJC.0b013e3181ffe8d0
Source: PubMed

ABSTRACT Clopidogrel is metabolically activated by cytochrome P450 (CYP) isoenzymes. We evaluated whether St. John's wort (SJW), a CYP2C19 and CYP3A4 inducer, enhances the pharmacodynamic response of clopidogrel. Volunteers (n = 45) were screened for clopidogrel hyporesponsiveness after a 300-mg load. After a 7-day washout, hyporesponders (n = 10) received 14 days of SJW (300 mg 3 times a day) followed by a second 300-mg clopidogrel. Platelet aggregation was measured at 0, 2, 4, and 6 hours postloading; hepatic CYP3A4 activity was simultaneously determined at 0 and 4 hours by the erythromycin breath test. A prospective, randomized, double-blind pilot study was conducted in postcoronary stent patients (n = 85) on clopidogrel 75 mg/d screened for clopidogrel hyporesponsiveness. Hyporesponders (n = 20) were randomized to SJW (n = 10) or placebo (n = 10); platelet aggregation was measured before and after 14 days of therapy. In volunteers, SJW decreased platelet aggregation (59% ± 14% vs. 40% ± 15% at 2 hours, P = 0.02; 56% ± 10% vs. 44% ± 13% at 4 hours, P < 0.03; and 55% ± 14% vs. 37% ± 14% at 6 hours, P = 0.01) and increased CYP3A4 activity (2.1% ± 0.4% CO2 exhaled per hour before vs. 2.9% ± 0.6% CO2 exhaled per hour after SJW, P = 0.002). In patients, SJW decreased platelet reactivity (226 ± 39 vs. 185 ± 49 P2Y12 reactivity units, P = 0.0002) and increased platelet inhibition (23% ± 11% vs. 41% ± 16%, P = 0.002). SJW may be a future therapeutic option to increase CYP metabolic activity and antiplatelet effect of clopidogrel in hyporesponders.

1 Follower
 · 
109 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Coprescribing of clopidogrel and other drugs is common. Available reviews have addressed the drug-drug interactions (DDIs) when clopidogrel is as an object drug, or focused on combination use of clopidogrel and a special class of drugs. Clinicians may still be ignorant of those DDIs when clopidogrel is a precipitant drug, the factors determining the degree of DDIs, and corresponding risk management. A literature search was performed using PubMed, MEDLINE, Web of Science, and the Cochrane Library to analyze the pharmacokinetic DDIs of clopidogrel and new P2Y12 receptor inhibitors. Clopidogrel affects the pharmacokinetics of cerivastatin, repaglinide, ferulic acid, sibutramine, efavirenz, and omeprazole. Low efficacy of clopidogrel is anticipated in the presence of omeprazole, esomeprazole, morphine, grapefruit juice, scutellarin, fluoxetine, azole antifungals, calcium channel blockers, sulfonylureas, and ritonavir. Augmented antiplatelet effects are anticipated when clopidogrel is coprescribed with aspirin, curcumin, cyclosporin, St John's wort, rifampicin, and angiotensin-converting enzyme inhibitors. The factors determining the degree of DDIs with clopidogrel include genetic status (eg, cytochrome P540 [CYP]2B6*6, CYP2C19 polymorphism, CYP3A5*3, CYP3A4*1G, and CYP1A2-163C.A), species differences, and dose strength. The DDI risk does not exhibit a class effect, eg, the effects of clopidogrel on cerivastatin versus other statins, the effects of proton pump inhibitors on clopidogrel (omeprazole, esomeprazole versus pantoprazole, rabeprazole), the effects of rifampicin on clopidogrel versus ticagrelor and prasugrel, and the effects of calcium channel blockers on clopidogrel (amlodipine versus P-glycoprotein-inhibiting calcium channel blockers). The mechanism of the DDIs with clopidogrel involves modulating CYP enzymes (eg, CYP2B6, CYP2C8, CYP2C19, and CYP3A4), paraoxonase-1, hepatic carboxylesterase 1, P-glycoprotein, and organic anion transporter family member 1B1. Effective and safe clopidogrel combination therapy can be achieved by increasing the awareness of potential changes in efficacy and toxicity, rationally selecting alternatives, tailoring drug therapy based on genotype, checking the appropriateness of physician orders, and performing therapeutic monitoring.
    Therapeutics and Clinical Risk Management 01/2015; 11:449-67. DOI:10.2147/TCRM.S80437 · 1.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Acute coronary syndromes (ACS) remain life-threatening disorders, which are associated with high morbidity and mortality. Dual antiplatelet therapy with aspirin and clopidogrel has been shown to reduce cardiovascular events in patients with ACS. However, there is substantial inter-individual variability in the response to clopidogrel treatment, in addition to prolonged recovery of platelet reactivity as a result of irreversible binding to P2Y12 receptors. This high inter-individual variability in treatment response has primarily been associated with genetic polymorphisms in the genes encoding for cytochrome (CYP) 2C19, which affect the pharmacokinetics of clopidogrel. While the US Food and Drug Administration has issued a boxed warning for CYP2C19 poor metabolizers because of potentially reduced efficacy in these patients, results from multivariate analyses suggest that additional factors, including age, sex, obesity, concurrent diseases and drug–drug interactions, may all contribute to the overall between-subject variability in treatment response. However, the extent to which each of these factors contributes to the overall variability, and how they are interrelated, is currently unclear. The objective of this review article is to provide a comprehensive update on the different factors that influence the pharmacokinetics and pharmacodynamics of clopidogrel and how they mechanistically contribute to inter-individual differences in the response to clopidogrel treatment.
    Clinical Pharmacokinetics 01/2015; 54(2). DOI:10.1007/s40262-014-0230-6 · 5.49 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: It is well established that high on-treatment platelet reactivity to adenosine diphosphate during clopidogrel therapy is an independent risk factor for ischemic event occurrences in a postpercutaneous coronary intervention patients. However, the precise role of platelet function testing remains debated. Platelet function testing to ensure optimal platelet inhibition has been recommended by some authorities to improve outcomes in patients treated with clopidogrel. Recent prospective, randomized trials of personalized antiplatelet therapy have failed to demonstrate a benefit of platelet function testing in improving outcomes. In this review article, we discuss the mechanisms responsible for clopidogrel nonreponsiveness, recent trials of platelet function testing, and other new developments in the field of personalized antiplatelet therapy. Full English text available from:www.revespcardiol.org/en.
    Revista Espa de Cardiologia 05/2014; · 3.34 Impact Factor