Article

Mycobacterium leprae phenolglycolipid-1 expressed by engineered M. bovis BCG modulates early interaction with human phagocytes.

CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France.
PLoS Pathogens (Impact Factor: 8.06). 10/2010; 6(10):e1001159. DOI: 10.1371/journal.ppat.1001159
Source: PubMed

ABSTRACT The species-specific phenolic glycolipid 1 (PGL-1) is suspected to play a critical role in the pathogenesis of leprosy, a chronic disease of the skin and peripheral nerves caused by Mycobacterium leprae. Based on studies using the purified compound, PGL-1 was proposed to mediate the tropism of M. leprae for the nervous system and to modulate host immune responses. However, deciphering the biological function of this glycolipid has been hampered by the inability to grow M. leprae in vitro and to genetically engineer this bacterium. Here, we identified the M. leprae genes required for the biosynthesis of the species-specific saccharidic domain of PGL-1 and reprogrammed seven enzymatic steps in M. bovis BCG to make it synthesize and display PGL-1 in the context of an M. leprae-like cell envelope. This recombinant strain provides us with a unique tool to address the key questions of the contribution of PGL-1 in the infection process and to study the underlying molecular mechanisms. We found that PGL-1 production endowed recombinant BCG with an increased capacity to exploit complement receptor 3 (CR3) for efficient invasion of human macrophages and evasion of inflammatory responses. PGL-1 production also promoted bacterial uptake by human dendritic cells and dampened their infection-induced maturation. Our results therefore suggest that M. leprae produces PGL-1 for immune-silent invasion of host phagocytic cells.

Download full-text

Full-text

Available from: Caroline Demangel, Jul 04, 2015
0 Followers
 · 
154 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Some intracellular bacteria are known to cause long-term infections that last decades without compromising the viability of the host. Although of critical importance, the adaptations that intracellular bacteria undergo during this long process of residence in a host cell environment remain obscure. Here, we report a novel experimental approach to study the adaptations of mycobacteria imposed by a long-term intracellular lifestyle. Selected Mycobacterium bovis BCG through continuous culture in macrophages underwent an adaptation process leading to impaired phenolic glycolipids (PGL) synthesis, improved usage of glucose as a carbon source and accumulation of neutral lipids. These changes correlated with increased survival of mycobacteria in macrophages and mice during re-infection and also with the specific expression of stress- and survival-related genes. Our findings identify bacterial traits implicated in the establishment of long-term cellular infections and represent a tool for understanding the physiological states and the environment that bacteria face living in fluctuating intracellular environments.
    Cellular Microbiology 04/2014; 16(9). DOI:10.1111/cmi.12303 · 4.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Leprosy is a chronic but treatable infectious disease caused by the intracellular pathogen Mycobacterium leprae. M. leprae cell wall is characterized by a unique phenolic glycolipid-1 (PGL-1) reported to have several immune functions. We have examined the role of PGL-1 in the modulation of monocyte cytokine/chemokine production in naive human monocytes. PGL-1 in its purified form or expressed in a recombinant Mycobacterium bovis Bacillus Colmette-Guérin (BCG) background (rBCG-PGL-1) was tested. We found that PGL-1 selectively modulated the induction of specific monocyte cytokines and chemokines and, when used as prestimulus, exerted priming and/or inhibitory effects on the induction of selected cytokines/chemokines in response to a second stimulus. Taken together, the results of this study support a modulatory role for PGL-1 in the innate immune response to M. leprae. Thus, PGL-1 may play an important role in the development of the anergic clinical forms of disease and in tissue damage seen in lepromatous patients and during the reactional states of leprosy.
    Journal of interferon & cytokine research: the official journal of the International Society for Interferon and Cytokine Research 01/2012; 32(1):27-33. DOI:10.1089/jir.2011.0044 · 3.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: When studied from the perspective of non-tuberculous mycobacteria (NTM) it is apparent that Mycobacterium tuberculosis has undergone a biphasic evolutionary process involving genome expansion (gene acquisition and duplication) and reductive evolution (deletions). This scheme can instruct descriptive and experimental studies that determine the importance of ancestral events (including horizontal gene transfer) in shaping the present-day pathogen. For example, heterologous complementation in an NTM can test the functional importance of M. tuberculosis-specific genetic insertions. An appreciation of both phases of M. tuberculosis evolution is expected to improve our fundamental understanding of its pathogenicity and facilitate the evaluation of novel diagnostics and vaccines.
    Trends in Microbiology 04/2011; 19(4):156-61. DOI:10.1016/j.tim.2010.12.008 · 9.81 Impact Factor