Article

Sonic hedgehog controls growth of external genitalia by regulating cell cycle kinetics

Department of Biology, University of Florida, Gainesville, FL 32611, USA.
Nature Communications (Impact Factor: 10.74). 06/2010; 1(3):23. DOI: 10.1038/ncomms1020
Source: PubMed

ABSTRACT During embryonic development, cells are instructed which position to occupy, they interpret these cues as differentiation programmes, and expand these patterns by growth. Sonic hedgehog (Shh) specifies positional identity in many organs; however, its role in growth is not well understood. In this study, we show that inactivation of Shh in external genitalia extends the cell cycle from 8.5 to 14.4 h, and genital growth is reduced by ∼75%. Transient Shh signalling establishes pattern in the genital tubercle; however, transcriptional levels of G1 cell cycle regulators are reduced. Consequently, G1 length is extended, leading to fewer progenitor cells entering S-phase. Cell cycle genes responded similarly to Shh inactivation in genitalia and limbs, suggesting that Shh may regulate growth by similar mechanisms in different organ systems. The finding that Shh regulates cell number by controlling the length of specific cell cycle phases identifies a novel mechanism by which Shh elaborates pattern during appendage development.

0 Followers
 · 
110 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: In most animals, reproduction by internal fertilization is facilitated by an intromittent organ, such as the penis in amniote vertebrates. Recent progress has begun to uncover the mechanisms of mammalian external genital development; however, comparatively little is known about the development of the reptilian penis and clitoris. Here, we describe the development of the phallus and cloaca in the American alligator, Alligator mississippiensis. The embryonic precursor of the penis and clitoris is the genital tubercle, which forms by the budding of genital mesenchyme beneath the ventral body wall ectoderm, adjacent to the cloacal membrane. The cloacal lips develop from another pair of outgrowths, the lateral swellings. Early development of the alligator phallus, cloaca, and urogenital ducts generally resembles that of other reptiles, suggesting that differences in adult reptilian phallus and cloacal anatomy arise at later stages. The phallic sulcus is derived from the cloacal endoderm, indicating that the crocodilian sulcus is functionally and developmentally homologous to the mammalian urethra. Initial external genital outgrowth and patterning occur prior to temperature-dependent sex determination. Our analysis of alligator phallus and cloaca development suggests that modifications of an ancestral program of urogenital development could have generated the morphological diversity found in the external genitalia of modern amniotes. © 2014 S. Karger AG, Basel.
    Sexual Development 06/2014; DOI:10.1159/000364817 · 1.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The diminished ability of aged muscle to self-repair is a factor behind sarcopenia and contributes to muscle atrophy. Muscle repair depends on satellite cells whose pool size is diminished with aging. A reduction in Notch pathway activity may explain the age-related decrease in satellite cell proliferation, as this pathway has been implicated in satellite cell self-renewal. Skeletal muscle is a target of vitamin D which modulates muscle cell proliferation and differentiation in vitro and stimulates muscle regeneration in vivo. Vitamin D status is positively correlated to muscle strength/function, and elderly populations develop a vitamin D deficiency. The aim of this study was to evaluate how vitamin D deficiency induces skeletal muscle atrophy in old rats through a reduction in Notch pathway activity and proliferation potential in muscle.
    Nutrition & Metabolism 09/2014; 11(1):47. DOI:10.1186/1743-7075-11-47 · 3.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: External genitalia are found in each of the major clades of amniotes. The phallus is an intromittent organ that functions to deliver sperm into the female reproductive tract for internal fertilization. The cellular and molecular genetic mechanisms of external genital development have begun to be elucidated from studies of the mouse genital tubercle, an embryonic appendage adjacent to the cloaca that is the precursor of the penis and clitoris. Progress in this area has improved our understanding of genitourinary malformations, which are among the most common birth defects in humans, and created new opportunities for comparative studies of other taxa. External genitalia evolve rapidly, which has led to a striking diversity of anatomical forms. Within the past year, studies of external genital development in non-mammalian amniotes, including birds, lizards, snakes, alligators, and turtles, have begun to shed light on the molecular and morphogenetic mechanisms underlying the diversification of phallus morphology. Here, we review recent progress in the comparative developmental biology of external genitalia and discuss the implications of this work for understanding external genital evolution. We address the question of the deep homology (shared common ancestry) of genital structures and of developmental mechanisms, and identify new areas of investigation that can be pursued by taking a comparative approach to studying development of the external genitalia. We propose an evolutionary interpretation of hypospadias, a congenital malformation of the urethra, and discuss how investigations of non-mammalian species can provide novel perspectives on human pathologies. © 2014 S. Karger AG, Basel.
    Sexual Development 08/2014; 8(5):311-326. DOI:10.1159/000365771 · 1.76 Impact Factor

Full-text (2 Sources)

Download
55 Downloads
Available from
May 17, 2014