Mitochondrial respiration protects against oxygen-associated DNA damage.

Translational Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
Nature Communications (Impact Factor: 10.74). 04/2010; 1:5. DOI: 10.1038/ncomms1003
Source: PubMed

ABSTRACT Oxygen is not only required for oxidative phosphorylation but also serves as the essential substrate for the formation of reactive oxygen species (ROS), which is implicated in ageing and tumorigenesis. Although the mitochondrion is known for its bioenergetic function, the symbiotic theory originally proposed that it provided protection against the toxicity of increasing oxygen in the primordial atmosphere. Using human cells lacking Synthesis of Cytochrome c Oxidase 2 (SCO2-/-), we have tested the oxygen toxicity hypothesis. These cells are oxidative phosphorylation defective and glycolysis dependent; they exhibit increased viability under hypoxia and feature an inverted growth response to oxygen compared with wild-type cells. SCO2-/- cells have increased intracellular oxygen and nicotinamide adenine dinucleotide (NADH) levels, which result in increased ROS and oxidative DNA damage. Using this isogenic cell line, we have revealed the genotoxicity of ambient oxygen. Our study highlights the importance of mitochondrial respiration both for bioenergetic benefits and for maintaining genomic stability in an oxygen-rich environment.

Download full-text


Available from: Wenzhe Ma, Jun 26, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The genetic links between p53 and metabolic processes such as oxidative phosphorylation are being studied with increasing interest given that cellular metabolism seems to play an important role in tumorigenesis. This review focuses on how p53 regulation of various metabolic genes may influence redox homeostasis, as the genome is constantly susceptible to oxidative damage, a consequence of living in an aerobic environment. Because p53-like genetic sequences are also found in life forms that may not necessarily benefit from tumor suppression, an evolutionary introduction is given in an attempt to understand why p53 might regulate a basic cellular activity such as metabolism. The presented epidemiologic and experimental data suggest that one reason may be for the homeostatic regulation of oxygen, the essential substrate for reactive oxygen species generation.
    Free Radical Biology and Medicine 07/2012; 53(6):1279-85. DOI:10.1016/j.freeradbiomed.2012.07.026 · 5.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: p53 regulates the cell cycle and deoxyribonucleic acid (DNA) repair pathways as part of its unequivocally important function to maintain genomic stability. Intriguingly, recent studies show that p53 can also transactivate genes involved in coordinating the two major pathways of energy generation to promote aerobic metabolism, but how this serves to maintain genomic stability is less clear. In an attempt to understand the biology, this review presents human epidemiologic data on the inverse relationship between aerobic capacity and cancer incidence that appears to be mirrored by the impact of p53 on aerobic capacity in mouse models. The review summarizes mechanisms by which p53 regulates mitochondrial respiration and proposes how this might contribute to maintaining genomic stability. Although disparate in nature, the data taken together suggest that the promotion of aerobic metabolism by p53 serves as an important tumor suppressor activity and may provide insights for cancer prevention strategies in the future.
    Antioxidants & Redox Signaling 10/2010; 15(6):1739-48. DOI:10.1089/ars.2010.3650 · 7.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The preferential use of aerobic glycolysis for energy production by cancer cells, a phenomenon known as the 'Warburg effect', is well recognized and is being considered for therapeutic applications. However, whether inhibition of glycolysis will be effective in all types of cancer is unclear. The current study shows that a glycolytic inhibitor, 2-deoxy-D-glucose (2DG), exhibits the cytotoxic effect on non-small cell lung cancer in a p53-dependent manner. 2DG significantly inhibits ATP production in p53-deficient lung cancer cells (H358) but not in p53-wt cells (A549). In contrast to p53-wt cells, p53-defective cells are unable to compensate for their need of energy via oxidative phosphorylation (OXPHOS) when glycolysis is inhibited. In the presence of p53, increased ROS from OXPHOS increases the expression of p53 target genes known to modulate metabolism, including synthesis of cytochrome c oxidase 2 (SCO2) and TP53-induced glycolysis and apoptosis regulator (TIGAR). Importantly, 2DG selectively induces the expression of the antioxidant enzymes manganese superoxide dismutase (MnSOD) and glutathione peroxidase 1 (GPx1) in a p53-dependent manner. The results demonstrate that the killing of cancer cells by the inhibitor of glycolysis is more efficient in cancer cells without functional p53 and that p53 protects against metabolic stress by up-regulation of oxidative phosphorylation and modulation of antioxidants.
    International Journal of Oncology 12/2010; 37(6):1575-81. · 2.77 Impact Factor