Formation of Bovine Placental Trophoblast Spheroids

Department of Anatomy, University of Veterinary Medicine Hannover, Hannover, Germany.
Cells Tissues Organs (Impact Factor: 2.14). 10/2010; 193(4):274-84. DOI: 10.1159/000320544
Source: PubMed


In this study, we aimed to form spheroids with the bovine placental trophoblast cell line F3. Spheroids are 3-dimensional culture models which can be used to conduct versatile in vitro and in vivo experiments.
The spheroids were generated using the hanging drop technique, 25% methocel and matrigel. The F3 spheroids were characterized morphologically by light microscopy and transmission (TEM) and scanning electron microscopy (SEM) and immunohistochemistry (ezrin, vimentin, cytokeratin, placental lactogen). The fluorescent dyes calcein and ethidium homodimer were used to determine the viability of the spheroidal F3 cells by immunofluorescence microscopy.
The cell line F3 only formed spheroids by the hanging drop technique when matrigel was added. The trophoblast spheroids were delimited and fully covered by extracellular matrix (light microscopy/TEM/SEM). Cells contributing to spheroids could not be discriminated from each other (light microscopy). The outer spheroidal layer consisted of cells which possessed an apical pole with microvilli that were directed to the outside (light microscopy/TEM). All of the spheroidal F3 cells expressed ezrin, vimentin and cytokeratin, but not placental lactogen. The spheroid core contained degenerating cells whilst the F3 cells of the outer rim were viable (TEM/immunofluorescence microscopy).
We have established a 3-dimensional spheroid model for the bovine placental trophoblast cell line F3. The developed culture model might prove valuable for future in vitro studies on the differentiation of bovine trophoblast cells.

1 Follower
32 Reads
    • "The spheroids formed after 2 days (CCSd). The harvest of the hanging drops spheroids is identical to the F3 trophoblastonly spheroids, which was published earlier [14] "
    [Show abstract] [Hide abstract]
    ABSTRACT: The feto-maternal interface during bovine implantation was studied in vivo and using three-dimensional bovine endometrial (BCECph) and trophoblast spheroids (CCS), each with underlying fibroblasts. The expression of ezrin and cytokeratin 18 (CK18) was analyzed via immunohistochemistry (IHC), RT-PCR and western blotting in bovine endometrium (GD 18-44) with in vivo (VIVO) and in vitro-produced embryos (VITRO). BCECph were stimulated with cotyledon-conditioned media (CCM) and analyzed by TEM/SEM and IHC. CCS were stained (IHC) for TGC markers, to test if spheroidal trophoblast cells had differentiated into TGC. At GD 20, caruncular epithelium (CE) and uterine glands (UG) showed a loss of cytosolic ezrin and CK18 followed by a complete loss of both proteins. At GD 35 both reappeared in CE and UG. The endometrial expression pattern did not differ between VIVO and VITRO. RT-PCR and western blotting confirmed the presence of ezrin and CK18. All spheroids had an outer polarized, cytokeratin and ezrin positive epithelium (CE or trophoblast) with apical microvilli. Stimulation of BCECph with CCM induced similar changes in ezrin expression as observed in endometrial tissue. However, no ultrastructural alterations were found by transmission electron microscopy. Absence of TGC-specific glycoproteins in CCS indicated that TGC differentiation was not induced by three-dimensional culture conditions. Ezrin and CK18 are downregulated during implantation in cattle. The expression changes represent a temporal depolarization, which could be important for an establishment of bovine pregnancy. Our in vitro experiments demonstrate that the trophoblast could contribute to this change in vivo. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Placenta 06/2015; 36(8). DOI:10.1016/j.placenta.2015.06.001 · 2.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Multicellular spheroids are three dimensional in vitro microscale tissue analogs. The current article examines the suitability of spheroids as an in vitro platform for testing drug delivery systems. Spheroids model critical physiologic parameters present in vivo, including complex multicellular architecture, barriers to mass transport, and extracellular matrix deposition. Relative to two-dimensional cultures, spheroids also provide better target cells for drug testing and are appropriate in vitro models for studies of drug penetration. Key challenges associated with creation of uniformly sized spheroids, spheroids with small number of cells and co-culture spheroids are emphasized in the article. Moreover, the assay techniques required for the characterization of drug delivery and efficacy in spheroids and the challenges associated with such studies are discussed. Examples for the use of spheroids in drug delivery and testing are also emphasized. By addressing these challenges with possible solutions, multicellular spheroids are becoming an increasingly useful in vitro tool for drug screening and delivery to pathological tissues and organs.
    Journal of Controlled Release 05/2012; 164(2). DOI:10.1016/j.jconrel.2012.04.045 · 7.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective: During pregnancy, fetal trophoblast disrupt endothelial cell and vascular smooth muscle cell (VSMC) interactions in spiral arteries of the maternal decidua to enable increased nutritional and oxygen delivery to the fetus. Little is known regarding this transformation because of difficulties of studying human pregnancy in vivo. This study investigated how trophoblast-secreted factors affect the interactions of vascular cells and the differentiation status of VSMC during spiral arteries remodeling using 3-dimensional vascular spheroid coculture. Methods and results: Endothelial cell and VSMC were cocultured in hanging droplets to form spheroids representing an inverted vessel lumen. Control or conditioned media from an extravillous trophoblast (EVT) cell line was incubated with vascular spheroids for 24 hours. Spheroid RNA was then analyzed by Illumina Sentrix BeadChip array. Spheroids incubated with EVT conditioned medium showed significant up/downregulation of 101 genes (>1.5-fold; P<0.05), including an upregulation of C-X-C motif chemokine 10 (IP-10). C-X-C motif chemokine 10 expression was confirmed by qualitative real-time PCR and Western blot analysis of spheroids, and immunohistochemistry of first trimester decidua and ex vivo dissected nonplacental bed spiral arteries. EVT conditioned medium reduced VSMC expression of differentiation markers, and both EVT conditioned medium and C-X-C motif chemokine 10 increased motility of VSMC indicating dedifferentiation of VSMC. Conclusions: EVT-induced C-X-C motif chemokine 10 expression may contribute to spiral arteries remodeling during pregnancy by altering the motility and differentiation status of the VSMC in the vessel.
    Arteriosclerosis Thrombosis and Vascular Biology 01/2013; 33(3). DOI:10.1161/ATVBAHA.112.300354 · 6.00 Impact Factor
Show more