STAT1-Activating Cytokines Limit Th17 Responses through Both T-bet-Dependent and -Independent Mechanisms

Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA.
The Journal of Immunology (Impact Factor: 5.36). 10/2010; 185(11):6461-71. DOI: 10.4049/jimmunol.1001343
Source: PubMed

ABSTRACT Given the association with autoimmune disease, there is great interest in defining cellular factors that limit overactive or misdirected Th17-type inflammation. Using in vivo and in vitro models, we investigated the molecular mechanisms for cytokine-mediated inhibition of Th17 responses, focusing on the role of STAT1 and T-bet in this process. These studies demonstrate that, during systemic inflammation, STAT1- and T-bet-deficient T cells each exhibit a hyper-Th17 phenotype relative to wild-type controls. However, IL-17 production was greater in the absence of T-bet, and when both STAT1 and T-bet were deleted, there was no further increase, with the double-deficient cells instead behaving more like STAT1-deficient counterparts. Similar trends were observed during in vitro priming, with production of Th17-type cytokines greater in T-bet(-/-) T cells than in either STAT1(-/-) or STAT1(-/-) T-bet(-/-) counterparts. The ability of IFN-γ and IL-27 to suppress Th17 responses was reduced in T-bet-deficient cells, and most importantly, ectopic T-bet could suppress signature Th17 gene products, including IL-17A, IL-17F, IL-22, and retinoic acid-related orphan receptor γT, even in STAT1-deficient T cells. Taken together, these studies formally establish that, downstream of IFN-γ, IL-27, and likely all STAT1-activating cytokines, there are both STAT1 and T-bet-dependent pathways capable of suppressing Th17 responses.

Download full-text


Available from: Alejandro V Villarino, Sep 26, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic mucocutaneous candidiasis disease (CMCD) may be caused by autosomal dominant (AD) IL-17F deficiency or autosomal recessive (AR) IL-17RA deficiency. Here, using whole-exome sequencing, we identified heterozygous germline mutations in STAT1 in 47 patients from 20 kindreds with AD CMCD. Previously described heterozygous STAT1 mutant alleles are loss-of-function and cause AD predisposition to mycobacterial disease caused by impaired STAT1-dependent cellular responses to IFN-γ. Other loss-of-function STAT1 alleles cause AR predisposition to intracellular bacterial and viral diseases, caused by impaired STAT1-dependent responses to IFN-α/β, IFN-γ, IFN-λ, and IL-27. In contrast, the 12 AD CMCD-inducing STAT1 mutant alleles described here are gain-of-function and increase STAT1-dependent cellular responses to these cytokines, and to cytokines that predominantly activate STAT3, such as IL-6 and IL-21. All of these mutations affect the coiled-coil domain and impair the nuclear dephosphorylation of activated STAT1, accounting for their gain-of-function and dominance. Stronger cellular responses to the STAT1-dependent IL-17 inhibitors IFN-α/β, IFN-γ, and IL-27, and stronger STAT1 activation in response to the STAT3-dependent IL-17 inducers IL-6 and IL-21, hinder the development of T cells producing IL-17A, IL-17F, and IL-22. Gain-of-function STAT1 alleles therefore cause AD CMCD by impairing IL-17 immunity.
    Journal of Experimental Medicine 08/2011; 208(8):1635-48. DOI:10.1084/jem.20110958 · 13.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Interleukin (IL)-27, a member of IL-12/IL-23 heterodimeric family of cytokines, has pleiotropic properties that can enhance or limit immune responses. IL-27 acts on various cell types, including T cells, B cells, macrophages, dendritic cells, natural killer (NK) cells and non-hematopoietic cells. Intensive studies have been conducted especially on T cells, revealing that various subsets of T cells respond uniquely to IL-27. IL-27 induces expansion of Th1 cells by activating signal transducer and activator of transcription (STAT) 1-mediated T-bet signaling pathway. On the other hand, IL-27 suppresses immune responses through inhibition of the development of T helper (Th) 17 cells and induction of IL-10 production in a STAT1- and STAT3-dependent manner. IL-27 is a potentially promising cytokine for therapeutic approaches on various human diseases. Here, we provide an overview of the biology of IL-27 related to T cell subsets, its structure, and production mechanism.
    International Journal of Molecular Sciences 02/2015; 16(2):2851-2863. DOI:10.3390/ijms16022851 · 2.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The activation of immune-defense mechanisms in response to a microbial attack must be robust and appropriately tailored to fight particular types of pathogens. Infection with intracellular microorganisms elicits a type 1 inflammatory response characterized by mobilization of T helper type 1 (T(H)1) cells to the site of infection, where they are responsible for the recruitment and activation of macrophages. At the center of the type 1 inflammatory response is the transcription factor T-bet, a critical regulator of the T(H)1 differentiation program. T-bet induces the production of interferon-γ (IFN-γ) and orchestrates the T(H)1 cell-migratory program by regulating the expression of chemokines and chemokine receptors. However, tight regulation of the type 1 inflammatory response is essential for the prevention of immunopathology and the development of organ-specific autoimmunity. In this review, we discuss how T-bet expression drives autoaggressive and inflammatory processes and how its function in vivo must be delicately balanced to avoid disease.
    Nature Immunology 06/2011; 12(7):597-606. DOI:10.1038/ni.2059 · 24.97 Impact Factor