Article

Identification of a receptor for an extinct virus.

The Howard Hughes Medical Institute, The Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY 10016, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 10/2010; 107(45):19496-501. DOI: 10.1073/pnas.1012344107
Source: PubMed

ABSTRACT The resurrection of endogenous retroviruses from inactive molecular fossils has allowed the investigation of interactions between extinct pathogens and their hosts that occurred millions of years ago. Two such paleoviruses, chimpanzee endogenous retrovirus-1 and -2 (CERV1 and CERV2), are relatives of modern MLVs and are found in the genomes of a variety of Old World primates, but are absent from the human genome. No extant CERV1 and -2 proviruses are known to encode functional proteins. To investigate the host range restriction of these viruses, we attempted to reconstruct functional envelopes by generating consensus genes and proteins. CERV1 and -2 enveloped MLV particles infected cell lines from a range of mammalian species. Using CERV2 Env-pseudotyped MLV reporters, we identified copper transport protein 1 (CTR1) as a receptor that was presumably used by CERV2 during its ancient exogenous replication in primates. Expression of human CTR1 was sufficient to confer CERV2 permissiveness on otherwise resistant hamster cells, and CTR1 knockdown or CuCl(2) treatment specifically inhibited CERV2 infection of human cells. Mutations in highly conserved CTR1 residues that have rendered hamster cells resistant to CERV2 include a unique deletion in a copper-binding motif. These CERV2 receptor-inactivating mutations in hamster CTR1 are accompanied by apparently compensating changes, including an increased number of extracellular copper-coordinating residues, and this may represent an evolutionary barrier to the acquisition of CERV2 resistance in primates.

0 Followers
 · 
98 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Since the discovery of viruses over a century ago, virologists have recognized that host genetics plays a major role in viral tropism and the distribution of viruses in nature. Traditionally, studies of tropism have centered on identification of cellular factors required for viral replication, such as cell-surface entry receptors. However, over the past 20 years, there has been a steady increase in the identification and characterization of restriction factors (RFs), here defined as dominant cellular factors that have evolved specifically to interfere with viral replication. Genetic studies suggest that restriction factors impose significant barriers to interspecies movement of viruses and are therefore critical determinants of viral tropism. Furthermore, the scope of the ever-expanding list of restriction factors, and the variety of antiviral mechanisms they represent, testifies to the extraordinary impact viruses have had on organismal evolution-an impact hitherto underappreciated by evolutionary biologists and virologists alike. Recent studies of RF-encoding genes that combine molecular evolutionary analysis with functional assays illustrate the potential for asking questions about virus-host interactions as they play out in natural populations and across evolutionary timescales. Most notably, it has become common to apply tests of positive selection to RF genes and couple these analyses with virological assays, to reveal evidence for antagonistic virus-host co-evolution. Herein, I summarize recent work on the evolutionary genetics of mammalian RFs, particularly those of humans, non-human primates, and model organisms, and how RFs can reveal the influence of virus-host interactions on organismal evolution. Because intensive investigation of RF evolution is fairly new (and because there is still much to learn), the discussion is organized around five broad, outstanding questions that will need to be answered before we can fully appreciate the evolutionary biology of restriction.
    Current topics in microbiology and immunology 01/2013; 371:123-151. DOI:10.1007/978-3-642-37765-5_5 · 3.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The majority of retroviral envelope glycoproteins characterized to date are typical of type I viral fusion proteins, having a receptor binding subunit associated with a fusion subunit. The fusion subunits of lentiviruses and alpha-, beta-, delta- and gammaretroviruses have a very conserved domain organization and conserved features of secondary structure, making them suitable for phylogenetic analyses. Such analyses, along with sequence comparisons, reveal evidence of numerous recombination events in which retroviruses have acquired envelope glycoproteins from heterologous sequences. Thus, the envelope gene (env) can have a history separate from that of the polymerase gene (pol), which is the most commonly used gene in phylogenetic analyses of retroviruses. Focusing on the fusion subunits of the genera listed above, we describe three distinct types of retroviral envelope glycoproteins, which we refer to as gamma-type, avian gamma-type and beta-type. By tracing these types within the 'fossil record' provided by endogenous retroviruses, we show that they have surprisingly distinct evolutionary histories and dynamics, with important implications for cross-species transmissions and the generation of novel lineages. These findings validate the utility of env sequences in contributing phylogenetic signal that enlarges our understanding of retrovirus evolution.
    Philosophical Transactions of The Royal Society B Biological Sciences 01/2013; 368(1626):20120506. DOI:10.1098/rstb.2012.0506 · 6.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ABSTRACT Twenty years ago (1992), a landmark Institute of Medicine report entitled "Emerging Infections: Microbial Threats to Health in the United States" underscored the important but often underappreciated concept of emerging infectious diseases (EIDs). A review of the progress made and setbacks experienced over the past 2 decades suggests that even though many new diseases have emerged, such as SARS (severe acute respiratory syndrome) and the 2009 pandemic influenza, significant advances have occurred in EID control, prevention, and treatment. Among many elements of the increase in the capacity to control EIDs are genomics-associated advances in microbial detection and treatment, improved disease surveillance, and greater awareness of EIDs and the complicated variables that underlie emergence. In looking back over the past 20 years, it is apparent that we are in a time of great change in which both the challenge of EIDs and our responses to them are being transformed. Recent advances support guarded optimism that further breakthroughs lie ahead.
    mBio 10/2012; 3(6). DOI:10.1128/mBio.00494-12 · 6.88 Impact Factor

Preview

Download
0 Downloads
Available from