Article

Rubicon controls endosome maturation as a Rab7 effector.

Division of Biochemistry and Molecular Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 10/2010; 107(45):19338-43. DOI: 10.1073/pnas.1010554107
Source: PubMed

ABSTRACT The activation and recruitment of the small GTPase Rab7 to early endosome is a critical step for early to late endosome maturation, a process that requires the class III phosphatidylinositol 3-kinase (PI3KC3) and GTPase regulators. However, the molecular mechanism underlying Rab7 activation and endosome maturation is still poorly defined. Here we report that Rubicon, a component of the PI3KC3 complex, prevents endosome maturation through differential interactions with Rab7 and UVRAG. UVRAG activates PI3KC3 and C-VPS/HOPS, a guanine nucleotide exchange factor that catalyzes the exchange of GDP for GTP on Rab7. We demonstrate that Rubicon sequesters UVRAG from C-VPS/HOPS. Active GTP-bound Rab7 competes for Rubicon binding and releases UVRAG to associate with C-VPS/HOPS, which in turn promotes further loading of Rab7 with GTP. This feed-forward loop ensures rapid amplification of GTP-bound Rab7 and consequent stimulation of endosome maturation. Hence, Rubicon serves as a previously unknown Rab7 effector to ensure the proper progression of the endocytic pathway.

0 Followers
 · 
170 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The interconnection of the endocytic and autophagosomal trafficking routes has been recognized more than two decades ago with both pathways using a set of identical effector proteins and sharing the same ultimate lysosomal destination. More recent data sheds light onto how other pathways are intertwined into this network, and how degradation via the endosomal/autophagosomal system may affect signaling pathways in multicellular organisms. Here, we briefly review the common features of autophagy and endocytosis and discuss how other players enter this mix with particular respect to the Notch signaling pathway.
    BioMed Research International 01/2014; 2014:960803. DOI:10.1155/2014/960803 · 2.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phagocytosis and autophagy are two important and related arms of the host's first-line defense against microbial invasion. Rubicon is a RUN domain containing cysteine-rich protein that functions as part of a Beclin-1-Vps34-containing autophagy complex. We report that Rubicon is also an essential, positive regulator of the NADPH oxidase complex. Upon microbial infection or Toll-like-receptor 2 (TLR2) activation, Rubicon interacts with the p22phox subunit of the NADPH oxidase complex, facilitating its phagosomal trafficking to induce a burst of reactive oxygen species (ROS) and inflammatory cytokines. Consequently, ectopic expression or depletion of Rubicon profoundly affected ROS, inflammatory cytokine production, and subsequent antimicrobial activity. Rubicon's actions in autophagy and in the NADPH oxidase complex are functionally and genetically separable, indicating that Rubicon functions in two ancient innate immune machineries, autophagy and phagocytosis, depending on the environmental stimulus. Rubicon may thus be pivotal to generating an optimal intracellular immune response against microbial infection.
    Cell host & microbe 03/2012; 11(3):264-76. DOI:10.1016/j.chom.2012.01.018 · 12.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Being deeply connected to signalling, cell dynamics, growth, regulation, and defence, endocytic processes are linked to almost all aspects of cell life and disease. In this review, we focus on endosomes in the classical endocytic pathway, and on the programme of changes that lead to the formation and maturation of late endosomes/multivesicular bodies. The maturation programme entails a dramatic transformation of these dynamic organelles disconnecting them functionally and spatially from early endosomes and preparing them for their unidirectional role as a feeder pathway to lysosomes.
    The EMBO Journal 08/2011; 30(17):3481-500. DOI:10.1038/emboj.2011.286 · 10.75 Impact Factor

Preview

Download
2 Downloads
Available from