Article

Essential role of paternal chromatin in the regulation of transcriptional activity during mouse preimplantation development

Department of Animal Biotechnology, College of Animal Bioscience and Biotechnology/Animal Resources Research Center, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, Republic of Korea.
Reproduction 10/2010; 141(1):67-77. DOI: 10.1530/REP-10-0109
Source: PubMed

ABSTRACT Several lines of evidence indicate that the formation of a transcriptionally repressive state during the two-cell stage in the preimplantation mouse embryo is superimposed on the activation of the embryonic genome. However, it is difficult to determine the profile of newly synthesized (nascent) RNA during this phase because large amounts of maternal RNA accumulate in maturing oocytes to support early development. Using 5-bromouridine-5'-triphosphate labeling of RNA, we have verified that nascent RNA synthesis was repressed between the two-cell and four-cell transition in normally fertilized but not in parthenogenetic embryos. Moreover, this repression was contributed by sperm (male) chromatin, which we confirmed by studying androgenetic embryos. The source of factors responsible for repressing nascent RNA production was investigated using different stages of sperm development. Fertilization with immature round spermatids resulted in a lower level of transcriptional activity than with ICSI at the two-cell stage, and this was consistent with further repression at the four-cell stage in the ICSI group. Finally, study on DNA replication and chromatin remodeling was performed using labeled histones H3 and H4 to differentiate between male and female pronuclei. The combination of male and female chromatin appeared to decrease nascent RNA production in the fertilized embryo. This study indicates that paternal chromatin is important in the regulation of transcriptional activity during mouse preimplantation development and that this capacity is acquired during spermiogenesis.

0 Followers
 · 
158 Views
  • Source
    • "In addition to polyadenylation controls (Oh et al. 2000; Schultz 2002), asRNAs may uncouple transcription from translation. Our analysis of differential gene expression demonstrated a transcriptionally repressed state during development (Fig. 3A), in agreement with previous reports (Schultz 2002; Bui et al. 2011). Therefore, gene silencing appears to be an essential mechanism in development , in a fashion similar to gene activation (Wang and Dey 2006). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Fertilization precisely choreographs parental genomes by using gamete-derived cellular factors and activating genome regulatory programs. However, the mechanism remains elusive owing to the technical difficulties of preparing large numbers of high-quality preimplantation cells. Here, we collected >14 × 10(4) high-quality mouse metaphase II oocytes and used these to establish detailed transcriptional profiles for four early embryo stages and parthenogenetic development. By combining these profiles with other public resources, we found evidence that gene silencing appeared to be mediated in part by noncoding RNAs and that this was a prerequisite for post-fertilization development. Notably, we identified 817 genes that were differentially expressed in embryos after fertilization compared with parthenotes. The regulation of these genes was distinctly different from those expressed in parthenotes, suggesting functional specialization of particular transcription factors prior to first cell cleavage. We identified five transcription factors that were potentially necessary for developmental progression: Foxd1, Nkx2-5, Sox18, Myod1, and Runx1. Our very large-scale whole-transcriptome profile of early mouse embryos yielded a novel and valuable resource for studies in developmental biology and stem cell research. The database is available at http://dbtmee.hgc.jp.
    Genes & Development 12/2013; 27(24):2736-48. DOI:10.1101/gad.227926.113 · 12.64 Impact Factor
  • Reproduction Fertility and Development 07/2012; DOI:10.1071/RD12075 · 2.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Embryonic development is a complex and dynamic process with frequent changes in gene expression, ultimately leading to cellular differentiation and commitment of various cell lines. These changes are likely preceded by changes to signaling cascades and/or alterations to the epigenetic program in specific cells. The process of epigenetic remodeling begins early in development. In fact, soon after the union of sperm and egg massive epigenetic changes occur across the paternal and maternal epigenetic landscape. The epigenome of these cells includes modifications to the DNA itself, in the form of DNA methylation, as well as nuclear protein content and modification, such as modifications to histones. Sperm chromatin is predominantly packaged by protamines, but following fertilization the sperm pronucleus undergoes remodeling in which maternally derived histones replace protamines, resulting in the relaxation of chromatin and ultimately decondensation of the paternal pronucleus. In addition, active DNA demethylation occurs across the paternal genome prior to the first cell division, effectively erasing many spermatogenesis derived methylation marks. This complex interplay begins the dynamic process by which two haploid cells unite to form a diploid organism. The biology of these events is central to the understanding of sexual reproduction, yet our knowledge regarding the mechanisms involved is extremely limited. This review will explore what is known regarding the post-fertilization epigenetic alterations of the paternal chromatin and the implications suggested by the available literature.
    Frontiers in Genetics 07/2012; 3:143. DOI:10.3389/fgene.2012.00143
Show more