Complementary roles of grey matter MTR and T2 lesions in predicting progression in early PPMS.

Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, UK.
Journal of neurology, neurosurgery, and psychiatry (Impact Factor: 4.87). 10/2010; 82(4):423-8. DOI: 10.1136/jnnp.2010.209890
Source: PubMed

ABSTRACT To investigate whether T2 lesion load and magnetisation transfer ratio (MTR) in the normal-appearing white matter (NAWM) and grey matter (GM) at study entry are independent predictors of progression and whether their changes correlate with the accrual of disability, over 5 years in early primary progressive multiple sclerosis (PPMS).
Forty-seven patients with early PPMS and 18 healthy controls were recruited at baseline and invited to attend clinical 6-monthly assessments for 3 years, and after 5 years. Patients were scored on the Expanded Disability Status Scale and multiple sclerosis functional composite subtests (25-foot timed walk test (TWT), nine-hole peg test and paced auditory serial addition test). At each time point, all subjects underwent brain MRI including T2-weighted, magnetisation transfer and volumetric sequences. T2 lesion load (T2LL), MTR histogram parameters and volumes for NAWM and GM were calculated. Statistical analyses identified predictors of progression and correlations between MRI changes and clinical changes over time.
Baseline T2LL and GM peak location and peak height MTR were independent predictors of progression, as measured by TWT; a model including these three predictors explained 91% of the variance of the progression on TWT, a significantly higher percentage than that obtained when the predictors were modelled individually (80%, 74% and 68%, respectively). A greater progression rate correlated with a steeper increase in T2LL and a faster decline in GM mean and peak location MTR.
The combined assessment of both visible white matter damage and GM involvement is useful in predicting progression in PPMS.

  • [Show abstract] [Hide abstract]
    ABSTRACT: We combined tract-based spatial statistics (TBSS) and magnetization transfer (MT) imaging to assess white matter (WM) tract-specific short-term changes in early primary-progressive multiple sclerosis (PPMS) and their relationships with clinical progression. Twenty-one PPMS patients within 5 years from onset underwent MT and diffusion tensor imaging (DTI) at baseline and after 12 months. Patients' disability was assessed. DTI data were processed to compute fractional anisotropy (FA) and to generate a common WM "skeleton," which represents the tracts that are "common" to all subjects using TBSS. The MT ratio (MTR) was computed from MT data and co-registered with the DTI. The skeletonization procedure derived for FA was applied to each subject's MTR image to obtain a "skeletonised" MTR map for every subject. Permutation tests were used to assess (i) changes in FA, principal diffusivities, and MTR over the follow-up, and (ii) associations between changes in imaging parameters and changes in disability. Patients showed significant decreases in MTR over one year in the corpus callosum (CC), bilateral corticospinal tract (CST), thalamic radiations, and superior and inferior longitudinal fasciculi. These changes were located both within lesions and the normal-appearing WM. No significant longitudinal change in skeletonised FA was found, but radial diffusivity (RD) significantly increased in several regions, including the CST bilaterally and the right inferior longitudinal fasciculus. MTR decreases, RD increases, and axial diffusivity decreases in the CC and CST correlated with a deterioration in the upper limb function. We detected tract-specific multimodal imaging changes that reflect the accrual of microstructural damage and possibly contribute to clinical impairment in PPMS. We propose a novel methodology that can be extended to other diseases to map cross-subject and tract-specific changes in MTR. Hum Brain Mapp, 2013. © 2013 Wiley Periodicals, Inc.
    Human Brain Mapping 04/2013; DOI:10.1002/hbm.22196 · 6.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Background: Histopathology has demonstrated extensive cortical grey matter (GM) demyeli- nation in multiple sclerosis (MS), and suggests that sulcal folds may be preferentially affected, particularly in progressive MS. This has not been confirmed in vivo, and it is not known if it is relevant to clinical status. Objectives: To determine sulcal and gyral crown magnetisation transfer ratio (MTR) in MS cortical GM, and the MTR associations with clinical status. Methods: We measured sulcal and gyral crown cortical GM MTR values in 61 MS patients and 32 healthy controls. Disability was measured using Expanded Disability Status Scale and Multiple Sclerosis Functional Composite scores. Results: MTR values were reduced in sulcal and gyral crown regions in all MS subtypes, more so in secondary progressive (SP) MS than relapsing remitting (RR) MS, and similarly in primary progressive (PP) MS and RRMS. Sulcal MTR was lower than gyral crown MTR in controls, PPMS and RRMS patients, but not in SPMS. MTR correlated with clinical status in RRMS and SPMS, but not PPMS. Conclusions: Cortical pathology, as reflected by MTR, is present in all MS subtypes and most pronounced in SPMS. A preferential disease effect on sulcal cortical regions was not observed. Cortical MTR abnormalities appear to be more clinically relevant in relapse-onset rather than progressive-onset MS. & 2013 Elsevier B.V. All rights reserved.
    01/2013; DOI:10.1016/j.msard.2013.01.001
  • [Show abstract] [Hide abstract]
    ABSTRACT: To investigate whether (1) there were differences between HLA-DRB1*15-positive and -negative patients at baseline, and (2) HLA-DRB1*15-positive patients showed a greater development of brain and spinal cord damage, as assessed by MRI, and greater progression of disability, during a 5-year follow-up, compared with HLA-DRB1*15-negative patients.
    Neurology 10/2014; DOI:10.1212/WNL.0000000000000959 · 8.30 Impact Factor

Full-text (2 Sources)

Available from
May 16, 2014