Article

Substantia nigra pars reticulata is crucially involved in barbiturate and ethanol withdrawal in mice

Veterans Affairs Medical Center, Portland, OR 97239-3098, United States.
Behavioural brain research (Impact Factor: 3.39). 10/2010; 218(1):152-7. DOI: 10.1016/j.bbr.2010.10.025
Source: PubMed

ABSTRACT Sedative-hypnotic CNS depressant drugs are widely prescribed to treat a variety of disorders, and are abused for their sedative and euphoric effects. Physiological dependence and associated withdrawal episodes are thought to constitute a motivational force that sustains their use/abuse and may contribute to relapse in dependent individuals. Although no animal model duplicates depressant dependence, models for specific factors, like withdrawal, are useful for identifying potential neural determinants of liability in humans. Recent analyses implicate the caudolateral substantia nigra pars reticulata (clSNr) in withdrawal following acute and repeated ethanol exposures in mice, but did not assess its impact on withdrawal from other sedative-hypnotics or whether intrinsic neurons or fibers of passage are involved. Here, we demonstrate that bilateral chemical (ibotenic acid) lesions of the clSNr attenuate barbiturate (pentobarbital) and ethanol withdrawal. Chemical lesions did not affect convulsions in response to pentylenetetrazole, which blocks GABA(A) receptor-mediated transmission. Our results demonstrate that the clSNr nucleus itself rather than fibers of passage is crucial to its effects on barbiturate and ethanol withdrawal. These findings support suggest that clSNr could be one of the shared neural substrates mediating withdrawal from sedative-hypnotic drugs.

Download full-text

Full-text

Available from: Laura B Kozell, Aug 15, 2015
0 Followers
 · 
105 Views
  • Source
    • "HICs were assessed at 10 time-points from 1 to 65 min post-PTZ administration. (b) Individual HIC severity scores were calculated as the sum of the corrected HIC scores 2–12 h post-ethanol as in previous work (Chen et al. 2011b). Pentylenetetrazol-enhanced convulsions did not differ between Mpdz shRNA (N = 8) compared with control (N = 7) animals. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Association studies implicate the multiple PDZ domain protein (MUPP1/MPDZ) gene in risk for alcoholism in humans and alcohol withdrawal in mice. Although manipulation of the Mpdz gene by homologous recombination and bacterial artificial chromosome transgenesis has suggested that its expression affects alcohol withdrawal risk, the potential confounding effects of linked genes and developmental compensation currently limit interpretation. Here, using RNA interference, we directly test the impact of Mpdz expression on alcohol withdrawal severity and provide brain regional mechanistic information. Lentiviral-mediated delivery of Mpdz short hairpin RNA (shRNA) to the caudolateral substantia nigra pars reticulata significantly reduces Mpdz expression and exacerbates alcohol withdrawal convulsions compared to control mice delivered a scrambled shRNA. Neither baseline nor pentylenetetrazol enhanced convulsions differed between Mpdz shRNA and control animals, indicating that Mpdz expression in the caudolateral substantia nigra pars reticulata does not generally affect seizure susceptibility. To our knowledge, these represent the first in vivo Mpdz RNA interference analyses, and provide the first direct evidence that Mpdz expression impacts behavior. Our results confirm that Mpdz is a quantitative trait gene for alcohol withdrawal and demonstrate that its expression in the caudolateral substantia nigra pars reticulata is crucially involved in risk for alcohol withdrawal.
    Genes Brain and Behavior 08/2014; 13(8). DOI:10.1111/gbb.12171 · 3.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Physiological dependence and associated withdrawal episodes are thought to constitute a motivational force that sustains alcohol use and abuse and may contribute to relapse in dependent individuals. Although no animal model duplicates alcoholism, models for specific factors, like withdrawal, are useful for identifying potential genetic and neural determinants of liability in humans. Previously, we identified a quantitative trait locus (QTL) and gene (Mpdz, which encodes the multi-PDZ domain protein) on chromosome 4 with a large effect on alcohol withdrawal in mice. Using congenic mice that confirm this QTL and c-Fos expression as a high-resolution marker of neuronal activation, we report that congenic mice show significantly less neuronal activity associated with alcohol withdrawal in the rostroventral caudate putamen (rvCP), but not other parts of the striatum, compared with background strain mice. Moreover, bilateral rvCP lesions significantly increase alcohol withdrawal severity. Using retrograde (fluorogold) and anterograde (Texas Red conjugated dextran amine) tract tracing, we found that ∼25% of c-Fos immunoreactive rvCP neurons project to caudolateral substantia nigra pars reticulata (clSNr), which we previously found is crucially involved in withdrawal following acute and repeated alcohol exposure. Our results expand upon work suggesting that this QTL impacts alcohol withdrawal via basal ganglia circuitry associated with limbic function, and indicate that an rvCP-clSNr projection plays a critical role. Given the growing body of evidence that the syntenic region of human chromosome 9p and human MPDZ gene are associated with alcohol abuse, our results may facilitate research on alcohol dependence and associated withdrawal in clinical populations.
    Genes Brain and Behavior 10/2010; 9(7):768-76. DOI:10.1111/j.1601-183X.2010.00611.x · 3.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Different regions of the striatum may have distinct roles in acute intoxication, alcohol seeking, dependence, and withdrawal. The recent advances are reviewed and discussed in our understanding of the role of the dorsolateral striatum (DLS), dorsomedial striatum (DMS), and ventral striatum in behavioral responses to alcohol, including alcohol craving in abstinent alcoholics, and alcohol consumption and withdrawal in rat, mouse, and nonhuman primate models. Reduced neuronal activity as well as dysfunctional connectivity between the ventral striatum and the dorsolateral prefrontal cortex is associated with alcohol craving and impairment of new learning processes in abstinent alcoholics. Within the DLS of mice and nonhuman primates withdrawn from alcohol after chronic exposure, glutamatergic transmission in striatal projection neurons is increased, while GABAergic transmission is decreased. Glutamatergic transmission in DMS projection neurons is also increased in ethanol withdrawn rats. Ex vivo or in vivo ethanol exposure and withdrawal causes a long-lasting increase in NR2B subunit-containing NMDA receptor activity in the DMS, contributing to ethanol drinking. Analyses of neuronal activation associated with alcohol withdrawal and site-directed lesions in mice implicate the rostroventral caudate putamen, a ventrolateral segment of the DMS, in genetically determined differences in risk for alcohol withdrawal involved in physical association of the multi-PDZ domain protein, MPDZ, with 5-HT(2C) receptors and/or NR2B. Alterations of dopaminergic, glutamatergic, and GABAergic signaling within different regions of the striatum by alcohol is critical for alcohol craving, consumption, dependence, and withdrawal in humans and animal models.
    Alcoholism Clinical and Experimental Research 05/2011; 35(10):1739-48. DOI:10.1111/j.1530-0277.2011.01520.x · 3.31 Impact Factor
Show more