Control of translation efficiency in yeast by codon-anticodon interactions.

Department of Biochemistry and Biophysics, University of Rochester Medical School, Rochester, New York 14642, USA.
RNA (Impact Factor: 4.62). 10/2010; 16(12):2516-28. DOI: 10.1261/rna.2411710
Source: PubMed

ABSTRACT The choice of synonymous codons used to encode a polypeptide contributes to substantial differences in translation efficiency between genes. However, both the magnitude and the mechanisms of codon-mediated effects are unknown, as neither the effects of individual codons nor the parameters that modulate codon-mediated regulation are understood, particularly in eukaryotes. To explore this problem in Saccharomyces cerevisiae, we performed the first systematic analysis of codon effects on expression. We find that the arginine codon CGA is strongly inhibitory, resulting in progressively and sharply reduced expression with increased CGA codon dosage. CGA-mediated inhibition of expression is primarily due to wobble decoding of CGA, since it is nearly completely suppressed by coexpression of an exact match anticodon-mutated tRNA(Arg(UCG)), and is associated with generation of a smaller RNA fragment, likely due to endonucleolytic cleavage at a stalled ribosome. Moreover, CGA codon pairs are more effective inhibitors of expression than individual CGA codons. These results directly implicate decoding by the ribosome and interactions at neighboring sites within the ribosome as mediators of codon-specific translation efficiency.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ribosome profiling data report on the distribution of translating ribosomes, at steady-state, with codon-level resolution. We present a robust method to extract codon translation rates and protein synthesis rates from these data, and identify causal features associated with elongation and translation efficiency in physiological conditions in yeast. We show that neither elongation rate nor translational efficiency is improved by experimental manipulation of the abundance or body sequence of the rare AGG tRNA. Deletion of three of the four copies of the heavily used ACA tRNA shows a modest efficiency decrease that could be explained by other rate-reducing signals at gene start. This suggests that correlation between codon bias and efficiency arises as selection for codons to utilize translation machinery efficiently in highly translated genes. We also show a correlation between efficiency and RNA structure calculated both computationally and from recent structure probing data, as well as the Kozak initiation motif, which may comprise a mechanism to regulate initiation.
    Molecular Systems Biology 12/2014; 10(12). DOI:10.15252/msb.20145524 · 14.10 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The numerous modifications of tRNA play central roles in controlling tRNA structure and translation. Modifications in and around the anticodon loop often have critical roles in decoding mRNA and in maintaining its reading frame. Residues U38 and U39 in the anticodon stem-loop are frequently modified to pseudouridine (Ψ) by members of the widely conserved TruA/Pus3 family of pseudouridylases. We investigate here the cause of the temperature sensitivity of pus3Δ mutants of the yeast Saccharomyces cerevisiae and find that, although Ψ38 or Ψ39 is found on at least 19 characterized cytoplasmic tRNA species, the temperature sensitivity is primarily due to poor function of tRNA(Gln(UUG)), which normally has Ψ38. Further investigation reveals that at elevated temperatures there are substantially reduced levels of the s(2)U moiety of mcm(5)s(2)U34 of tRNA(Gln(UUG)) and the other two cytoplasmic species with mcm(5)s(2)U34, that the reduced s(2)U levels occur in the parent strain BY4741 and in the widely used strain W303, and that reduced levels of the s(2)U moiety are detectable in BY4741 at temperatures as low as 33°C. Additional examination of the role of Ψ38,39 provides evidence that Ψ38 is important for function of tRNA(Gln(UUG)) at permissive temperature, and indicates that Ψ39 is important for the function of tRNA(Trp(CCA)) in trm10Δ pus3Δ mutants and of tRNA(Leu(CAA)) as a UAG nonsense suppressor. These results provide evidence for important roles of both Ψ38 and Ψ39 in specific tRNAs, and establish that modification of the wobble position is subject to change under relatively mild growth conditions. © 2014 Han et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
    RNA 12/2014; 21(2). DOI:10.1261/rna.048173.114 · 4.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In Eukarya, stalled translation induces 40S dissociation and recruitment of the ribosome quality control complex (RQC) to the 60S subunit, which mediates nascent chain degradation. Here we report cryo-electron microscopy structures revealing that the RQC components Rqc2p (YPL009C/Tae2) and Ltn1p (YMR247C/Rkr1) bind to the 60S subunit at sites exposed after 40S dissociation, placing the Ltn1p RING (Really Interesting New Gene) domain near the exit channel and Rqc2p over the P-site transfer RNA (tRNA). We further demonstrate that Rqc2p recruits alanine- and threonine-charged tRNA to the A site and directs the elongation of nascent chains independently of mRNA or 40S subunits. Our work uncovers an unexpected mechanism of protein synthesis, in which a protein--not an mRNA--determines tRNA recruitment and the tagging of nascent chains with carboxy-terminal Ala and Thr extensions ("CAT tails"). Copyright © 2015, American Association for the Advancement of Science.
    Science 01/2015; 347(6217):75-78. DOI:10.1126/science.1259724 · 31.48 Impact Factor


Available from