Substrate specificity of three recombinant α-L-arabinofuranosidases from Bifidobacterium adolescentis and their divergent action on arabinoxylan and arabinoxylan oligosaccharides.

Division of Gene Technology, Katholieke Universiteit Leuven, Leuven, Belgium.
Biochemical and Biophysical Research Communications (Impact Factor: 2.28). 10/2010; 402(4):644-50. DOI: 10.1016/j.bbrc.2010.10.075
Source: PubMed

ABSTRACT Bifidobacterium adolescentis possesses several arabinofuranosidases able to hydrolyze arabinoxylans (AX) and AX oligosaccharides (AXOS), the latter being bifidogenic carbohydrates with potential prebiotic properties. We characterized two new recombinant arabinofuranosidases, AbfA and AbfB, and AXH-d3, a previously studied arabinofuranosidase from B. adolescentis. AbfA belongs to glycoside hydrolase family (GH) 43 and removed arabinose from the C(O)2 and C(O)3 position of monosubstituted xylose residues. Furthermore, hydrolytic activity of AbfA was much larger towards substrates with a low amount of arabinose substitutions. AbfB from GH 51 only cleaved arabinoses on position C(O)3 of disubstituted xyloses, similar to GH 43 AXH-d3, making it to our knowledge, the first reported enzyme with this specificity in GH 51. AbfA acted synergistically with AbfB and AXH-d3. In combination with AXH-d3, it released 60% of arabinose from wheat AX. Together with recent studies on other AXOS degrading enzymes from B. adolescentis, these findings allowed us to postulate a mechanism for the uptake and hydrolysis of bifidogenic AXOS by this organism.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Arabinoxylan (AX) is among the most abundant hemicelluloses on earth and one of the major components of feedstocks that are currently investigated as a source for advanced biofuels. As global research into these sustainable biofuels is increasing, scientific knowledge about the enzymatic breakdown of AX advanced significantly over the last decade. This review focuses on the exo-acting AX hydrolases, such as α-arabinofuranosidases and β-xylosidases. It aims to provide a comprehensive overview of the diverse substrate specificities and corresponding structural features found in the different glycoside hydrolase families. A careful review of the available literature reveals a marked difference in activity between synthetically labeled and naturally occurring substrates, often leading to erroneous enzymatic annotations. Therefore, special attention is given to enzymes with experimental evidence on the hydrolysis of natural polymers.
    Biotechnology advances 11/2013; · 8.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The detailed characterization of arabinoxylan-active enzymes, such as double-substituted xylan arabinofuranosidase activity, is still a challenging topic. Ad hoc chromogenic substrates are useful tools and can reveal subtle differences in enzymatic behavior. In this study, enzyme selectivity on natural substrates has been compared with enzyme selectivity towards aryl-glycosides. This has proven to be a suitable approach to understand how artificial substrates can be used to characterize arabinoxylan-active α-l-arabinofuranosidases (Abfs).
    Biochimica et biophysica acta. 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Arabinoxylan-oligosaccharides (AXOS) are prebiotic carbohydrates with promising health-promoting properties that stimulate the activity of specific colon bacteria, in particular bifidobacteria. However, the mechanisms by which bifidobacterial strains break down these compounds in the colon is still unknown. This study investigates AXOS consumption of a large number of bifidobacterial strains (36), belonging to eleven different species, systematically. To determine their degradation mechanisms, all strains were grown on a mixture of arabinose and xylose, xylo-oligosaccharides, and complex AXOS molecules as the sole added energy sources. Based on principal component and cluster analyses of their different arabinose substituent and/or xylose backbone consumption patterns, five clusters that were species-independent could be distinguished among the bifidobacterial strains tested. In parallel, the strains were screened for the presence of genes encoding several putative AXOS-degrading enzymes, but no clear-cut correlation could be made with the different degradation mechanisms. The intra- and inter-species differences in the consumption patterns of AXOS indicate that bifidobacterial strains could avoid competition among each other or even could cooperate jointly to degrade these complex prebiotics. The knowledge gained on the AXOS degradation mechanisms in bifidobacteria can be of importance in the rational design of prebiotics with tailor-made composition and thus increased specificity in the colon.
    Applied and Environmental Microbiology 10/2013; · 3.95 Impact Factor