Preparation of core-shell molecularly imprinted polymer via the combination of reversible addition-fragmentation chain transfer polymerization and click reaction.

Analysis and Measure Center, Jilin Normal University, Siping 136000, China.
Analytica chimica acta (Impact Factor: 4.31). 11/2010; 680(1-2):65-71. DOI: 10.1016/j.aca.2010.09.017
Source: PubMed

ABSTRACT In this paper, we demonstrated an efficient and robust route to the preparation of well-defined molecularly imprinted polymer based on reversible addition-fragmentation chain transfer (RAFT) polymerization and click chemistry. The alkyne terminated RAFT chain transfer agent was first synthesized, and then click reaction was used to graft RAFT agent onto the surface of silica particles which was modified by azide. Finally, imprinted thin film was prepared in the presence of 2,4-dichlorophenol as the template. The imprinted beads were demonstrated with a homogeneous polymer films (thickness of about 2.27 nm), and exhibited thermal stability under 255°C. The as-synthesized product showed obvious molecular imprinting effects towards the template, fast template rebinding kinetics and an appreciable selectivity over structurally related compounds.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Herein, we present a survey of the literature covering the development of molecular imprinting science and technology over the years 2004–2011. In total, 3779 references to the original papers, reviews, edited volumes and monographs from this period are included, along with recently identified uncited materials from prior to 2004, which were omitted in the first instalment of this series covering the years 1930–2003. In the presentation of the assembled references, a section presenting reviews and monographs covering the area is followed by sections describing fundamental aspects of molecular imprinting including the development of novel polymer formats. Thereafter, literature describing efforts to apply these polymeric materials to a range of application areas is presented. Current trends and areas of rapid development are discussed. Copyright © 2014 John Wiley & Sons, Ltd.
    Journal of Molecular Recognition 06/2014; 27(6). · 3.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Computational simulation and Doehlert experimental optimization were done for the rational design of a core-shell molecularly imprinted polymer (CS-MIP) for use in the highly selective separation of Tanshinone IIA (TSIIA) from the crude extracts of Salvia miltiorrhiza Bunge (SMB). The functional monomer layer of the polymer shells directed the selective occurrence of imprinting polymerization at the surface of silica through the copolymerization of vinyl end groups with functional monomers and also drove TSIIA templates into the formed polymer shells through the charge-transfer complex interactions between TSIIA and the functional monomer layer. As a result, the maximum rebinding capacity was achieved with the use of optimal grafting ratio by the Doehlert design. The CS-MIP exhibited high recognition selectivity and binding affinity to TSIIA. When the imprinted particles were used as dispersive solid phase extraction sorbents, the recovery yield of TSIIA reached 93% by a one-step extraction from the crude extracts of SMB, and the purity of TSIIA was larger than 98% by HPLC analysis. These results show the possibility of a highly selective separation and enrichment of TSIIA from the SMB using the TSIIA-imprinted core-shell molecularly imprinted polymers.
    Analytical and Bioanalytical Chemistry 05/2012; 403(9):2691-703. · 3.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Molecularly imprinted polymers have been successfully used as selective stationary phases in capillary electrophoresis. Notwithstanding, this technique suffers from several drawbacks as the loss of molecular recognition properties in aqueous media and the lack of feasibility for imprinted systems directed towards highly polar templates soluble in aqueous environments only. Thus, the preparation of imprinted polymers for highly polar, water-soluble analytes, represents a challenge. In this work, we present an innovative approach to overcome these drawbacks. It is based on a surface molecular imprinting technique that uses preformed macromonomers as both functional recognition elements and cross-linking agents. A poly-2-hydroxyethyl-co-methacrylic acid linear polymer was grafted from the surface of silica capillaries. The grafted polymer was exhaustively esterified with methacrylic anhydride to obtain polyethylendimethacrylate-co-methacrylic acid linear chains. Then, as a proof of concept, an adequate amount of a very polar template like penicillin V was added in a hydro-organic mixture, and a thin layer of imprinted polymer was obtained by cross-linking the polymer linear chains. The binding behaviour of the imprinted and non-imprinted capillaries was evaluated in different separation conditions in order to assess the presence of template selectivity and molecular recognition effects. The experimental results clearly show that this innovative kind of imprinted material can be easily obtained in very polar polymerization environments and that it is characterized by enhanced molecular recognition properties in aqueous buffers and good selectivity towards the template and strictly related molecules.
    Journal of Molecular Recognition 06/2012; 25(6):377-82. · 3.01 Impact Factor