Article

Reducing PEX13 expression ameliorates physiological defects of late-acting peroxin mutants.

Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA.
Traffic (Impact Factor: 4.71). 10/2010; 12(1):121-34. DOI: 10.1111/j.1600-0854.2010.01136.x
Source: PubMed

ABSTRACT Proteins are targeted to the peroxisome matrix via processes that are mechanistically distinct from those used by other organelles. Protein entry into peroxisomes requires peroxin (PEX) proteins, including early-acting receptor (e.g. PEX5) and docking peroxins (e.g. PEX13 and PEX14) and late-acting PEX5-recycling peroxins (e.g. PEX4 and PEX6). We examined genetic interactions among Arabidopsis peroxin mutants and found that the weak pex13-1 allele had deleterious effects when combined with pex5-1 and pex14-2, which are defective in early-acting peroxins, as shown by reduced matrix protein import and enhanced physiological defects. In contrast, combining pex13-1 with pex4-1 or pex6-1, which are defective in late-acting peroxins, unexpectedly ameliorated mutant growth defects. Matrix protein import remained impaired in pex4-1 pex13-1 and pex6-1 pex13-1, suggesting that the partial suppression of pex4-1 and pex6-1 physiological defects by a weak pex13 allele may result from restoring the balance between import and export of PEX5 or other proteins that are retrotranslocated from the peroxisome with the assistance of PEX4 and PEX6. Our results suggest that symptoms caused by pex mutants defective in late-acting peroxins may result not only from defects in matrix protein import but also from inefficient removal of PEX5 from the peroxisomal membrane following cargo delivery.

0 Followers
 · 
116 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Peroxisomal matrix proteins carry PTS1 or PTS2 peroxisomal targeting signals and are imported into the organelle with the assistance of peroxin (PEX) proteins. From a microscopy-based screen to identify Arabidopsis thaliana mutants defective in matrix protein degradation, we isolated novel mutations in PEX2 and PEX10, which encode ubiquitin-protein ligases anchored in the peroxisomal membrane. In yeast, PEX2, PEX10, and a third ligase, PEX12, ubiquitinate a peroxisome matrix protein receptor, PEX5, allowing the PEX1 and PEX6 ATPases to retrotranslocate PEX5 out of the membrane after cargo delivery. We found that the pex2-1 and pex10-2 Arabidopsis mutants exhibited defects in peroxisomal physiology and matrix protein import. Moreover, the pex2-1 pex10-2 double mutant exhibited severely impaired growth and synergistic physiological defects, suggesting that PEX2 and PEX10 function cooperatively in wild type. The pex2-1 lesion restored the unusually low PEX5 levels in the pex6-1 mutant, implicating PEX2 in PEX5 degradation when retrotranslocation is impaired. PEX5 overexpression altered pex10-2 but not pex2-1 defects, suggesting that PEX10 facilitates PEX5 retrotranslocation from the peroxisomal membrane. Although the pex2-1 pex10-2 double mutant displayed severe import defects of both PTS1 and PTS2 proteins into peroxisomes, both pex2-1 and pex10-2 single mutants exhibited clear import defects of PTS1 proteins but apparently normal PTS2 import. A similar PTS1-specific pattern was observed in the pex4-1 ubiquitin-conjugating enzyme mutant. Our results indicate that Arabidopsis PEX2 and PEX10 cooperate to support import of matrix proteins into plant peroxisomes, and suggest that some PTS2 import can still occur when PEX5 retrotranslocation is slowed.
    Plant physiology 09/2014; DOI:10.1104/pp.114.247148 · 7.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Peroxisomal biogenesis is an ubiquitin-dependent process because the receptors required for the import of peroxisomal matrix proteins are controlled via their ubiquitination status. A key step is the monoubiquitination of the import receptor Pex5p by the ubiquitin-conjugating enzyme (E2) Pex4p. This monoubiquitination is supposed to take place after Pex5p has released the cargo into the peroxisomal matrix and primes Pex5p for the extraction from the membrane by the mechano-enzymes Pex1p/Pex6p. These two AAA-type ATPases export Pex5p back to the cytosol for further rounds of matrix protein import. Recently, it has been reported that the soluble Pex4p requires the interaction to its peroxisomal membrane-anchor Pex22p to display full activity. Here we demonstrate that the soluble C-terminal domain of Pex22p harbours its biological activity and that this activity is independent from its function as membrane-anchor of Pex4p. We show that Pex4p can be functionally fused to the trans-membrane segment of the membrane protein Pex3p, which is not directly involved in Pex5p-ubiquitination and matrix protein import. However, this Pex3(N)-Pex4p chimera can only complement the double-deletion strain pex4Δ/pex22Δ and ensure optimal Pex5p-ubiquitination when the C-terminal part of Pex22p is additionally expressed in the cell. Thus, while the membrane-bound portion Pex22(N)p is not required when Pex4p is fused to Pex3(N)p, the soluble Pex22(C)p is essential for peroxisomal biogenesis and efficient monoubiquitination of the import receptor Pex5p by the E3-ligase Pex12p in vivo and in vitro. The results merge into a picture of an ubiquitin-conjugating complex at the peroxisomal membrane consisting of three domains: the ubiquitin-conjugating domain (Pex4p), a membrane-anchor domain (Pex22(N)p) and an enhancing domain (Pex22(C)p), with the membrane-anchor domain being mutually exchangeable, while the Ubc- and enhancer-domains are essential.
    PLoS ONE 08/2014; 9(8):e105894. DOI:10.1371/journal.pone.0105894 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Peroxisomes are organelles that catabolize fatty acids and compartmentalize other oxidative metabolic processes in eukaryotes. Using a forward-genetic screen designed to recover severe peroxisome-defective mutants, we isolated a viable allele of the peroxisome biogenesis gene PEX13 with striking peroxisomal defects. The pex13-4 mutant requires an exogenous source of fixed carbon for pre-photosynthetic development and is resistant to the protoauxin indole-3-butyric acid. Delivery of peroxisome-targeted matrix proteins depends on the PEX5 receptor docking with PEX13 at the peroxisomal membrane, and we found severely reduced import of matrix proteins and less organelle-associated PEX5 in pex13-4 seedlings. Moreover, pex13-4 physiological and molecular defects were partially ameliorated when PEX5 was overexpressed, suggesting that PEX5 docking is partially compromised in this mutant and can be improved by increasing PEX5 levels. Because previously described Arabidopsis pex13 alleles either are lethal or confer only subtle defects, the pex13-4 mutant provides valuable insight into plant peroxisome receptor docking and matrix protein import.
    Plant Molecular Biology 07/2014; 86(1-2). DOI:10.1007/s11103-014-0223-8 · 4.07 Impact Factor

Preview

Download
0 Downloads
Available from