Article

Prenatal LPS increases inflammation in the substantia nigra of Gdnf heterozygous mice.

Department of Neurosciences, Medical University of South Carolina, Center on Aging, Charleston, SC 29425, USA.
Brain Pathology (Impact Factor: 4.35). 10/2010; 21(3):330-48. DOI: 10.1111/j.1750-3639.2010.00457.x
Source: PubMed

ABSTRACT Prenatal systemic inflammation has been implicated in neurological diseases, but optimal animal models have not been developed. We investigated whether a partial genetic deletion of glial cell line-derived neurotrophic factor (Gdnf(+/-)) increased vulnerability of dopamine (DA) neurons to prenatal lipopolysaccharide (LPS). LPS [0.01 mg/kg intraperitoneal (i.p.)] or saline was administered to wild-type (WT) or Gdnf(+/-) pregnant mice on gestational day 9.5. Male offspring were examined at 3 weeks, 3 and 12 months of age. There was a progressive degeneration of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra (SN) with age in Gdnf(+/-) but not in WT mice, with no observed effects on locus coeruleus (LC) noradrenergic neurons or DA neurons of the ventral tegmental area. Inflammatory markers were elevated in SN of LPS treated offspring, with exacerbation in Gdnf(+/-) mice. Intracellular accumulation of α-synuclein (α-syn) immunoreactivity in DA neurons of SN was observed in all groups of Gdnf(+/-) and in WT mice with prenatal LPS, with altered distribution between pars reticulata (pr) and pars compacta (pc). The findings suggest that prenatal LPS leads to accelerated neuropathology in the SN with age, and that a partial loss of GDNF exacerbates these effects, providing a novel model for age-related neuropathology of the nigrostriatal DA system.

0 Bookmarks
 · 
128 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Inflammation has been implicated in the pathology of several neurodegenerative diseases, including Parkinson’s disease (PD). Studies using the endotoxin lipopolysaccharide (LPS), a potent inflammogen, show that systemic insults can trigger prolonged microglial activation and pro-inflammatory cytokine production leading to degeneration of substantia nigra (SN) dopamine (DA) neurons, mimicking idiopathic PD. Because rapid effects of LPS on SN neurons had not been investigated previously, the focus of this study is to assess time-dependent alterations in SN neuroinflammation, DAergic neurons, and neuronal signaling cascades following LPS administration. LPS (5 mg/kg, i.p.) or saline (0.9% NaCl) was administered to 8-month-old male mice. At 3 hrs, 5 hrs, and 12 hrs post-injection, the morphology of the SN was assessed using antibodies directed against tyrosine hydroxylase (TH, DAergic marker), Iba-1 (pan-microglial marker), phospho-ERK, and phospho-CREB (signaling). LPS administration significantly reduced TH-immunoreactivity (ir) at all time-points with the greatest reduction observed at 12 h post-injection. Reduced TH-ir was accompanied by a significant increase in activated microglia at all time-points following LPS. By 12 h post-injection, LPS-treated mice exhibited activated as well as reactive microglia, which can result in neuronal damage. These data demonstrate that the initial reduction in TH-ir observed after an LPS injection was not concomitant with morphological alterations in microglial cells, even though a significant increase in phospho-ERK was observed in glial cells as soon as 3 h post-injection. It is possible that the initial alteration in DA phenotype (TH reduction) may perpetuate an inflammatory response that persists and leads to further DAergic damage.
    Brain research 04/2014; · 2.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The impact of the group B streptococcus (GBS)-induced maternal inflammation on offspring's brain has not yet been investigated despite GBS being one of the most frequent bacteria colonizing or infecting pregnant women. According to our hypothesis GBS-induced maternal immune activation plays a role in offspring perinatal brain damage and subsequent neurodisabilities such as autism. Using a new preclinical rat model of maternal inflammation triggered by inactivated GBS, we demonstrated placental, neuropathological and behavioral impacts on offspring. GBS-exposed placentas presented cystic lesions and polymorphonuclear infiltration located within the decidual/maternal side of the placenta, contrasting with macrophagic infiltration and necrotic areas located in the labyrinth/fetal compartment of the placenta after lipopolysaccharide-induced maternal inflammation. Brain damage featured lateral ventricles widening, predominately in the male, reduction of periventricular external capsules thickness, oligodendrocyte loss, and disorganization of frontoparietal subcortical tissue with no glial proliferation. Autistic hallmarks were found in offspring exposed to GBS, namely deficits in motor behavior, social and communicative impairments, i.e. profound defects in the integration and response to both acoustic and chemical signals that are predominant modes of communication in rats. Surprisingly, only male offspring were affected by these combined autistic-like traits. Our results show for the first time that materno-fetal inflammatory response to GBS plays a role in the induction of placental and cerebral insults, remarkably recapitulating cardinal features of human autism such as gender dichotomy and neurobehavioral traits. Unlike other models of prenatal inflammatory brain damage (induced by viral/toll-like receptor 3 (TLR3) or Gram-negative/TLR4), maternal inflammation resulting from GBS/TLR2 interactions induced a distinctive pattern of chorioamnionitis and cerebral injuries. These results also provide important evidence that beyond genetic influences, modifiable environmental factors play a role in both the occurrence of autism and its gender imbalance. © 2013 S. Karger AG, Basel.
    Developmental Neuroscience 11/2013; · 3.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: GDNF is a potent neuroprotective factor for midbrain dopaminergic (mDA) neurons. In LPS-mediated models for mDA degeneration GDNF increases neuron survival and further reduces microglia activation. To elucidate the effects of GDNF on LPS-induced activation, primary microglia from C57BL/6 and NMRI mice have been analysed. In this study we demonstrate that GDNF is not able to inhibit LPS-mediated upregulation and release of the proinflammatory factors IL6 and TNFα. Moreover, we provide evidence that mouse microglia, in contrast to rat microglia, lack expression of the GDNF signalling receptor c-Ret resulting in abrogated activation of downstream signalling kinases Akt and Erk1/2.
    Journal of neuroimmunology 05/2014; · 2.84 Impact Factor

Full-text (2 Sources)

Download
39 Downloads
Available from
May 21, 2014