Article

Genome-Wide Analyses Reveal a Role for Peptide Hormones in Planarian Germline Development

Howard Hughes Medical Institute and Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America.
PLoS Biology (Impact Factor: 11.77). 10/2010; 8(10):e1000509. DOI: 10.1371/journal.pbio.1000509
Source: PubMed

ABSTRACT Bioactive peptides (i.e., neuropeptides or peptide hormones) represent the largest class of cell-cell signaling molecules in metazoans and are potent regulators of neural and physiological function. In vertebrates, peptide hormones play an integral role in endocrine signaling between the brain and the gonads that controls reproductive development, yet few of these molecules have been shown to influence reproductive development in invertebrates. Here, we define a role for peptide hormones in controlling reproductive physiology of the model flatworm, the planarian Schmidtea mediterranea. Based on our observation that defective neuropeptide processing results in defects in reproductive system development, we employed peptidomic and functional genomic approaches to characterize the planarian peptide hormone complement, identifying 51 prohormone genes and validating 142 peptides biochemically. Comprehensive in situ hybridization analyses of prohormone gene expression revealed the unanticipated complexity of the flatworm nervous system and identified a prohormone specifically expressed in the nervous system of sexually reproducing planarians. We show that this member of the neuropeptide Y superfamily is required for the maintenance of mature reproductive organs and differentiated germ cells in the testes. Additionally, comparative analyses of our biochemically validated prohormones with the genomes of the parasitic flatworms Schistosoma mansoni and Schistosoma japonicum identified new schistosome prohormones and validated half of all predicted peptide-encoding genes in these parasites. These studies describe the peptide hormone complement of a flatworm on a genome-wide scale and reveal a previously uncharacterized role for peptide hormones in flatworm reproduction. Furthermore, they suggest new opportunities for using planarians as free-living models for understanding the reproductive biology of flatworm parasites.

0 Followers
 · 
171 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Neglected diseases caused by helminth infections impose a massive hindrance to progress in the developing world. While basic research on parasitic flatworms (platyhelminths) continues to expand, researchers have yet to broadly adopt a free-living model to complement the study of these important parasites. Methods: We report the high-coverage sequencing (RNA-Seq) and assembly of the transcriptome of the planarian Girardia tigrina across a set of dynamic conditions. The assembly was annotated and extensive orthology analysis was used to seed a pipeline for the rational prioritization and validation of putative anthelmintic targets. A small number of targets conserved between parasitic and free-living flatworms were comparatively interrogated. Results: 240 million paired-end reads were assembled de novo to produce a strictly filtered predicted proteome consisting of over 22,000 proteins. Gene Ontology annotations were extended to 16,467 proteins. 2,693 sequences were identified in orthology groups spanning flukes, tapeworms and planaria, with 441 highlighted as belonging to druggable protein families. Chemical inhibitors were used on three targets in pharmacological screens using both planaria and schistosomula, revealing distinct motility phenotypes that were shown to correlate with planarian RNAi phenotypes. Conclusions: This work provides the first comprehensive and annotated sequence resource for the model planarian G. tigrina, alongside a prioritized list of candidate drug targets conserved among parasitic and free-living flatworms. As proof of principle, we show that a simple RNAi and pharmacology pipeline in the more convenient planarian model system can inform parasite biology and serve as an efficient screening tool for the identification of lucrative anthelmintic targets.
    Parasites & Vectors 01/2015; 8(34). DOI:10.1186/s13071-014-0622-3 · 3.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Efforts to elucidate the cellular and molecular mechanisms of regeneration have required the application of methods to detect specific cell types and tissues in a growing cohort of experimental animal models. For example, in the planarian Schmidtea mediterranea, substantial improvements to nucleic acid hybridization and electron microscopy protocols have facilitated the visualization of regenerative events at the cellular level. By contrast, immunological resources have been slower to emerge. Specifically, the repertoire of antibodies recognizing planarian antigens remains limited, and a more systematic approach is needed to evaluate the effects of processing steps required during sample preparation for immunolabeling.ResultsTo address these issues and to facilitate studies of planarian digestive system regeneration, we conducted a monoclonal antibody (mAb) screen using phagocytic intestinal cells purified from the digestive tracts of living planarians as immunogens. This approach yielded ten antibodies that recognized intestinal epitopes, as well as markers for the central nervous system, musculature, secretory cells, and epidermis. In order to improve signal intensity and reduce non-specific background for a subset of mAbs, we evaluated the effects of fixation and other steps during sample processing. We found that fixative choice, treatments to remove mucus and bleach pigment, as well as methods for tissue permeabilization and antigen retrieval profoundly influenced labeling by individual antibodies. These experiments led to the development of a step-by-step workflow for determining optimal specimen preparation for labeling whole planarians as well as unbleached histological sections.Conclusions We generated a collection of monoclonal antibodies recognizing the planarian intestine and other tissues; these antibodies will facilitate studies of planarian tissue morphogenesis. We also developed a protocol for optimizing specimen processing that will accelerate future efforts to generate planarian-specific antibodies, and to extend functional genetic studies of regeneration to post-transcriptional aspects of gene expression, such as protein localization or modification. Our efforts demonstrate the importance of systematically testing multiple approaches to species-specific idiosyncracies, such as mucus removal and pigment bleaching, and may serve as a template for the development of immunological resources in other emerging model organisms.
    BMC Developmental Biology 12/2014; 14(1):45. DOI:10.1186/s12861-014-0045-6 · 2.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Planarians are an attractive model organism for studying stem cell-based regeneration due to their ability to replace all of their tissues from a population of adult stem cells. The molecular toolkit for planarian studies currently includes the ability to study gene function using RNA interference (RNAi) and observe gene expression via in situ hybridizations. However, there are few antibodies available to visualize protein expression, which would greatly enhance analysis of RNAi experiments as well as allow further characterization of planarian cell populations using immunocytochemistry and other immunological techniques. Thus, additional, easy-to-use, and widely available monoclonal antibodies would be advantageous to study regeneration in planarians.ResultsWe have created seven monoclonal antibodies by inoculating mice with formaldehyde-fixed cells isolated from dissociated 3-day regeneration blastemas. These monoclonal antibodies can be used to label muscle fibers, axonal projections in the central and peripheral nervous systems, two populations of intestinal cells, ciliated cells, a subset of neoblast progeny, and discrete cells within the central nervous system as well as the regeneration blastema. We have tested these antibodies using eight variations of a formaldehyde-based fixation protocol and determined reliable protocols for immunolabeling whole planarians with each antibody. We found that labeling efficiency for each antibody varies greatly depending on the addition or removal of tissue processing steps that are commonly used for in situ hybridization or immunolabeling techniques. Our experiments show that a subset of the antibodies can be used alongside markers commonly used in planarian research, including anti-SYNAPSIN and anti-SMEDWI, or following whole-mount in situ hybridization experiments.Conclusions The monoclonal antibodies described in this paper will be a valuable resource for planarian research. These antibodies have the potential to be used to better understand planarian biology and to characterize phenotypes following RNAi experiments. In addition, we present alterations to fixation protocols and demonstrate how these changes can increase the labeling efficiencies of antibodies used to stain whole planarians.
    BMC Developmental Biology 01/2015; 15(1):2. DOI:10.1186/s12861-014-0050-9 · 2.75 Impact Factor

Full-text (2 Sources)

Download
103 Downloads
Available from
May 22, 2014