Fate mapping analysis reveals that adult microglia derive from primitive macrophages.

Department of Gene and Cell Medicine and the Immunology Institute, Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029, USA.
Science (Impact Factor: 31.48). 10/2010; 330(6005):841-5. DOI: 10.1126/science.1194637
Source: PubMed

ABSTRACT Microglia are the resident macrophages of the central nervous system and are associated with the pathogenesis of many neurodegenerative and brain inflammatory diseases; however, the origin of adult microglia remains controversial. We show that postnatal hematopoietic progenitors do not significantly contribute to microglia homeostasis in the adult brain. In contrast to many macrophage populations, we show that microglia develop in mice that lack colony stimulating factor-1 (CSF-1) but are absent in CSF-1 receptor-deficient mice. In vivo lineage tracing studies established that adult microglia derive from primitive myeloid progenitors that arise before embryonic day 8. These results identify microglia as an ontogenically distinct population in the mononuclear phagocyte system and have implications for the use of embryonically derived microglial progenitors for the treatment of various brain disorders.

  • Peter Thériault, Ayman ElAli, Serge Rivest
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) is the most common neurodegenerative disorder affecting older people worldwide. It is a progressive disorder mainly characterized by the presence of amyloid-beta (Aβ) plaques and neurofibrillary tangles within the brain parenchyma. It is now well accepted that neuroinflammation constitutes an important feature in AD, wherein the exact role of innate immunity remains unclear. Although innate immune cells are at the forefront to protect the brain in the presence of toxic molecules including Aβ, this natural defense mechanism seems insufficient in AD patients. Monocytes are a key component of the innate immune system and they play multiple roles, such as the removal of debris and dead cells via phagocytosis. These cells respond quickly and mobilize toward the inflamed site, where they proliferate and differentiate into macrophages in response to inflammatory signals. Many studies have underlined the ability of circulating and infiltrating monocytes to clear vascular Aβ microaggregates and parenchymal Aβ deposits respectively, which are very important features of AD. On the other hand, microglia are the resident immune cells of the brain and they play multiple physiological roles, including maintenance of the brain's microenvironment homeostasis. In the injured brain, activated microglia migrate to the inflamed site, where they remove neurotoxic elements by phagocytosis. However, aged resident microglia are less efficient than their circulating sister immune cells in eliminating Aβ deposits from the brain parenchyma, thus underlining the importance to further investigate the functions of these innate immune cells in AD. The present review summarizes current knowledge on the role of monocytes and microglia in AD and how these cells can be mobilized to prevent and treat the disease.
    Alzheimer's Research and Therapy 04/2015; 7(1). DOI:10.1186/s13195-015-0125-2 · 3.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tissue macrophages play important roles in maintaining homeostasis in most organs of the body including the brain where microglia represent the resident phagocytic cells of this compartment. The possibility of one day harnessing macrophage plasticity to treat or ameliorate disorders including obesity, cancer, organ damage, intestinal disorders, neurodegeneration, and cardiovascular disease in which these cells play a role, is a very exciting prospect. Inflammatory signaling is required for regenerative repair, healing, and pathogen clearance functions. However, when the inflammatory response persists in a chronic fashion over an extended period of time, damage to neurons is followed by neuronal injury and dysfunction. Macrophages in the brain are heterogeneous arising from tissues during embryogenesis, and in the adult, from bone marrow derived monocytes that enter through the blood-brain-barrier. While much of our insight regarding macrophage functional subtypes has been garnered through elegant studies in mice, which are amenable to genetic manipulation, far less is known about such cells in human tissues, and particularly in the brain under normal, disease, or injurious conditions. In this regard, non-human primate models for human immunodeficiency virus have been extremely useful for understanding the contribution of bone marrow-derived monocytes in neurological disease and their interaction and impact on the activation state of resident microglia in the brain. This review will focus on what has been learned from the rhesus macaque models about the types of macrophages present in the brains of animals with encephalitis. In vitro studies, which have used human blood monocytes differentiated into macrophages to address the question of macrophage subsets in HIV infection will be highlighted. Recent insights on macrophage phenotype and persistent inflammation in the brain in HIV-associated neurocognitive disorder from immunohistochemical studies on human autopsy tissue will be examined.
    01/2015; 4:7. DOI:10.1186/s40169-015-0049-2
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Macrophages are a major cell type in tissue homeostasis and contribute to both pathology and resolution in all acute and chronic inflammatory diseases ranging from infections, cancer, obesity, atherosclerosis, autoimmune disorders to neurodegenerative diseases such as Alzheimer's disease. The cellular and functional diversity of macrophages depends upon tightly regulated transcription. The innate immune system is under profound evolutionary selection. There is increasing recognition that human macrophage biology differs very significantly from that of commonly studied animal models, which therefore can have a limited predictive value. Here we report on the newest findings on transcriptional control of macrophage activation, and how we envision integrating studies on transcriptional and epigenetic regulation, and more classical approaches in murine models. Moreover, we provide new insights into how we can learn about transcriptional regulation in the human system from larger efforts such as the FANTOM (Functional Annotation of the Mammalian Genome) consortium. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Seminars in Immunology 04/2015; DOI:10.1016/j.smim.2015.02.001 · 6.12 Impact Factor

Full-text (2 Sources)

Available from
May 20, 2014