Comparison of three strategies in management of independent movement of the prostate and pelvic lymph nodes.

Department of Radiation Oncology, University of California-San Francisco, San Francisco, California 94143, USA.
Medical Physics (Impact Factor: 3.01). 09/2010; 37(9):5006-13. DOI: 10.1118/1.3480505
Source: PubMed

ABSTRACT Concurrent irradiation of the prostate and pelvic lymph nodes is technically challenging due to treating one moving target and one immobile target. The purposes of this article are to propose a new management strategy and to compare this strategy to the conventional isocenter shift method and the previously proposed MLC-shifting method.
To cope with two target volumes (one moving and one immobile), the authors propose a new management strategy referred to as multiple adaptive plans (MAPs). This strategy involves the creation of a pool of plans for a number of potential prostate locations. Without requiring any additional hardware or software, the MAP strategy is to choose a plan from the pool that most closely matches the "prostate position of the day." This position can be determined by dual image registrations: One aligned to the implant markers in the prostate and the other aligned to the pelvic bones. This strategy was clinically implemented for a special patient with high risk prostate cancer and pathologically confirmed positive pelvic lymph nodes, requiring concurrent IMRT treatment of the prostate and pelvic lymph nodes. Because this patient had an abdominal kidney, small planning margins around the both targets were desired. Using 17 daily acquired megavoltage cone beam CTs (CBCTs), three sets of validation plans were calculated to retrospectively evaluate the MAP strategy as well as the isoshifting and MLC-shifting strategies.
According to the validation plans, MAP, isoshifting, and MLC-shifting strategies resulted in D95 of the prostate > 95% of the daily dose on 65%, 100%, and 100% treatment days, respectively. Similarly, D95 of the pelvic lymph nodal was > 95% of the daily dose on 100%, 75%, and 94% of treatment days, respectively.
None of the above strategies simultaneously achieved all treatment goals. Among the three strategies, the MLC shifting was most successful. Validation plans based on daily CBCTs are useful to evaluate the effectiveness of the motion management strategies and to provide additional dose guidance if further dose compensation is needed.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Deformation and correlated target motion remain challenges for margin recipes in radiotherapy (RT). This study presents a statistical deformable motion model for multiple targets and applies it to margin evaluations for locally advanced prostate cancer i.e. RT of the prostate (CTV-p), seminal vesicles (CTV-sv) and pelvic lymph nodes (CTV-ln). The 19 patients included in this study, all had 7-10 repeat CT-scans available that were rigidly aligned with the planning CT-scan using intra-prostatic implanted markers, followed by deformable registrations. The displacement vectors from the deformable registrations were used to create patient-specific statistical motion models. The models were applied in treatment simulations to determine probabilities for adequate target coverage, e.g. by establishing distributions of the accumulated dose to 99% of the target volumes (D99) for various CTV-PTV expansions in the planning-CTs. The method allowed for estimation of the expected accumulated dose and its variance of different DVH parameters for each patient. Simulations of inter-fractional motion resulted in 7, 10, and 18 patients with an average D99 >95% of the prescribed dose for CTV-p expansions of 3mm, 4mm and 5mm, respectively. For CTV-sv and CTV-ln, expansions of 3mm, 5mm and 7mm resulted in 1, 11 and 15 vs. 8, 18 and 18 patients respectively with an average D99 >95% of the prescription. Treatment simulations of target motion revealed large individual differences in accumulated dose mainly for CTV-sv, demanding the largest margins whereas those required for CTV-p and CTV-ln were comparable.
    Radiotherapy and Oncology 10/2013; · 4.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To determine the dosimetric impact of daily imaging alignment focus on the prostate soft tissue versus the pelvic bones for the concurrent treatment of the prostate and pelvic lymph nodes (PLN) and to assess whether multileaf collimator (MLC) tracking or adaptive planning (ART) is necessary with the current clinical planning margins of 8 mm/6 mm posterior to the prostate and 5 mm to the PLN. A total of 124 kilovoltage cone-beam computed tomography (kV-CBCT) images from 6 patients were studied. For each KV-CBCT, 4 plans were retrospectively created using an isocenter shifting method with 2 different alignment focuses (prostate, PLN), an MLC shifting method, and the ART method. The selected dosimetric endpoints were compared among these plans. For the isoshift contour, isoshift bone, MLC shift, and ART plans, D99 of the prostate was ≥97% of the prescription dose in 97.6%, 73.4%, 98.4%, and 96.8% of 124 fractions, respectively. Accordingly, D99 of the PLN was ≥97% of the prescription dose in 98.4%, 98.4%, 98.4%, and 100% of 124 fractions, respectively. For the rectum, D5 exceeded 105% of the planned D5 (and D5 of ART plans) in 11% (4%), 10% (2%), and 13% (5%) of 124 fractions, respectively. For the bladder, D5 exceeded 105% of the planned D5 (and D5 of ART) plans in 0% (2%), 0% (2%), and 0% (1%) of 124 fractions, respectively. For concurrent treatment of the prostate and PLN, with a planning margin to the prostate of 8 mm/6 mm posterior and a planning margin of 5 mm to the PLN, aligning to the prostate soft tissue can achieve adequate dose coverage to the both target volumes; aligning to the pelvic bone would result in underdosing to the prostate in one-third of fractions. With these planning margins, MLC tracking and ART methods have no dosimetric advantages.
    International journal of radiation oncology, biology, physics 07/2013; · 4.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Concurrent irradiation of the prostate and pelvic lymph nodes (PLNs) can be challenging due to the independent motion of the two target volumes. To address this challenge, the authors have proposed a strategy referred to as Multiple Adaptive Planning (MAP). To minimize the number of MAP plans, the authors' previous work only considered the prostate motion in one major direction. After analyzing the pattern of the prostate motion, the authors investigated a practical number of intensity-modulated radiotherapy (IMRT) plans needed to accommodate the prostate motion in two major directions simultaneously. Six patients, who received concurrent irradiation of the prostate and PLNs, were selected for this study. Nine MAP-IMRT plans were created for each patient with nine prostate contours that represented the prostate at nine locations with respect to the PLNs, including the original prostate contour and eight contours shifted either 5 mm in a single anterior-posterior (A-P), or superior-inferior (S-I) direction, or 5 mm in both A-P and S-I directions simultaneously. From archived megavoltage cone beam CT (MV-CBCT) and a dual imaging registration, 17 MV-CBCTs from 33 available MV-CBCT from these patients showed large prostate displacements (>3 mm in any direction) with respect to the pelvic bones. For each of these 17 fractions, one of nine MAP-IMRT plans was retrospectively selected and applied to the MV-CBCT for dose calculation. For comparison, a simulated isocenter-shifting plan and a reoptimized plan were also created for each of these 17 fractions. The doses to 95% (D95) of the prostate and PLNs, and the doses to 5% (D5) of the rectum and bladder were calculated and analyzed. For the prostate, D95 > 97% of the prescription dose was observed in 16, 16, and 17 of 17 fractions for the MAP, isocenter-shifted, and reoptimized plans, respectively. For PLNs, D95 > 97% of the prescription doses was observed in 10, 3, and 17 of 17 fractions for the three types of verification plans, respectively. The D5 (mean ± SD) of the rectum was 45.78 ± 5.75, 45.44 ± 4.64, and 44.64 ± 2.71 Gy, and the D5 (mean ± SD) of the bladder was 45.18 ± 2.70, 46.91 ± 3.04, and 45.67 ± 3.61 Gy for three types of verification plans, respectively. The MAP strategy with nine IMRT plans to accommodate the prostate motions in two major directions achieved good dose coverage to the prostate and PLNs. The MAP approach can be immediately used in clinical practice without requiring extra hardware and software.
    Medical Physics 02/2014; 41(2):021704. · 3.01 Impact Factor