Comparison of GEANT4 very low energy cross section models with experimental data in water.

Université Bordeaux 1, CNRS/IN2P3, Centre d'Etudes Nucléaires de Bordeaux-Gradignan, CENBG, Chemin du Solarium, BP 120, 33175 Gradignan, France.
Medical Physics (Impact Factor: 3.01). 09/2010; 37(9):4692-708. DOI: 10.1118/1.3476457
Source: PubMed

ABSTRACT The GEANT4 general-purpose Monte Carlo simulation toolkit is able to simulate physical interaction processes of electrons, hydrogen and helium atoms with charge states (H0, H+) and (He0, He+, He2+), respectively, in liquid water, the main component of biological systems, down to the electron volt regime and the submicrometer scale, providing GEANT4 users with the so-called "GEANT4-DNA" physics models suitable for microdosimetry simulation applications. The corresponding software has been recently re-engineered in order to provide GEANT4 users with a coherent and unique approach to the simulation of electromagnetic interactions within the GEANT4 toolkit framework (since GEANT4 version 9.3 beta). This work presents a quantitative comparison of these physics models with a collection of experimental data in water collected from the literature.
An evaluation of the closeness between the total and differential cross section models available in the GEANT4 toolkit for microdosimetry and experimental reference data is performed using a dedicated statistical toolkit that includes the Kolmogorov-Smirnov statistical test. The authors used experimental data acquired in water vapor as direct measurements in the liquid phase are not yet available in the literature. Comparisons with several recommendations are also presented.
The authors have assessed the compatibility of experimental data with GEANT4 microdosimetry models by means of quantitative methods. The results show that microdosimetric measurements in liquid water are necessary to assess quantitatively the validity of the software implementation for the liquid water phase. Nevertheless, a comparison with existing experimental data in water vapor provides a qualitative appreciation of the plausibility of the simulation models. The existing reference data themselves should undergo a critical interpretation and selection, as some of the series exhibit significant deviations from each other.
The GEANT4-DNA physics models available in the GEANT4 toolkit have been compared in this article to available experimental data in the water vapor phase as well as to several published recommendations on the mass stopping power. These models represent a first step in the extension of the GEANT4 Monte Carlo toolkit to the simulation of biological effects of ionizing radiation.

  • Physics in Medicine and Biology 11/2014; 59(24). · 2.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: a b s t r a c t Elastic scattering of protons and alpha (a) particles by water molecules cannot be neglected at low inci-dent energies. However, this physical process is currently not available in the ''Geant4-DNA'' extension of the Geant4 Monte Carlo simulation toolkit. In this work, we report on theoretical differential and integral cross sections of the elastic scattering process for 100 eV–1 MeV incident protons and for 100 eV–10 MeV incident a particles in liquid water. The calculations are performed within the classical framework described by Everhart et al., Ziegler et al. and by the ICRU 49 Report. Then, we propose an implementation of the corresponding classes into the Geant4-DNA toolkit for modeling the elastic scattering of protons and a particles. Stopping powers as well as ranges are also reported. Then, it clearly appears that the account of the elastic scattering process in the slowing-down of the charged particle improves the agreement with the existing data in particular with the ICRU recommendations. Ó 2014 Elsevier B.V. All rights reserved.
    Nuclear Instruments and Methods in Physics Research Section B Beam Interactions with Materials and Atoms 01/2015; 343. · 1.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, fragmentation yields of carbon therapy beams are estimated using the Geant4 simulation toolkit version 9.5. Simulations are carried out in a step-by-step mode using the Geant4-DNA processes for each of the major contributing fragments. The energy of the initial beam is taken 400 MeV amu−1 as this is the highest energy, which is used for medical accelerators and this would show the integral role of secondary contributions in radiotherapy irradiations. The obtained results showed that 64% of the global dose deposition is initiated by carbon ions, while up to 36% is initiated by the produced fragments including all their isotopes. The energy deposition clustering yields of each of the simulated fragments are then estimated using the DBSCAN clustering algorithm and they are compared to the yields of the incident primary beam.
    Physics in Medicine and Biology 11/2014; 59(24). · 2.92 Impact Factor


Available from
May 30, 2014