Validation of recombinant Sendai virus in a non-natural host model.

Department of Gene Therapy, Imperial College London, National Heart and Lung Institute, Manresa Road, London, UK.
Gene therapy (Impact Factor: 4.75). 10/2010; 18(2):182-8. DOI: 10.1038/gt.2010.131
Source: PubMed

ABSTRACT We have previously shown that recombinant Sendai virus (SeV) vector, derived from murine parainfluenza virus, is one of the most efficient vectors for airway gene transfer. We have also shown that SeV-mediated transfection on second administration, although reduced by 60% when compared with levels achieved after a single dose, is still high because of the efficient transfection achieved by SeV vector in murine airways. Here, we show that these levels further decrease on subsequent doses. In addition, we validated SeV vector repeat administration in a non-natural host model, the sheep. As part of these studies we first assessed viral stability in a Pari LC Plus nebuliser, a polyethylene catheter (PEC) and the Trudell AeroProbe. We also compared the distribution of gene expression after PEC and Trudell AeroProbe administration and quantified virus shedding after sheep transduction. In addition, we show that bronchial brushings and biopsies, collected in anaesthetized sheep, can be used to assess SeV-mediated gene expression over time. Similar to mice, gene expression in sheep was transient and had returned to baseline values by day 14. In conclusion, the SeV vector should be strongly considered for lung-related applications requiring a single administration of the vector even though it might not be suitable for diseases requiring repeat administration.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: Gene therapy may be suitable for a large number of acquired and inherited lung diseases, and research efforts in the field are vast. Although gene transfer to the lung has proven more challenging than initially anticipated, significant progress has been made over the last 10 years. Areas covered: Here, we will first review viral and non-viral gene transfer agents that have been assessed for lung gene therapy and discuss key barriers to pulmonary gene transfer. We will then review progress in gene therapy for various lung diseases. Expert opinion: In our view, one of the most significant developments in recent years is the generation of lentiviral vectors which efficiently transduce lung tissue. Focused and coordinated efforts assessing lentivirus safety and scaling up lentivirus production will be required to move this vector into clinical lung gene therapy studies. Although market authorization for a lung gene therapy product is not yet available, we are optimistic that this key milestone can be achieved in the next few years.
    Expert opinion on biological therapy 01/2013; · 3.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Airway gene delivery is a promising strategy to treat patients with life-threatening lung diseases such as cystic fibrosis (CF). However, this strategy has to be evaluated in large animal preclinical studies in order to translate it to human applications. Because of anatomic and physiological similarities between the human and pig lungs, we utilized pig as a large animal model to examine the safety and efficiency of airway gene delivery with helper-dependent adenoviral vectors. Helper-dependent vectors carrying human CFTR or reporter gene LacZ were aerosolized intratracheally into pigs under bronchoscopic guidance. We found that the LacZ reporter and hCFTR transgene products were efficiently expressed in lung airway epithelial cells. The transgene vectors with this delivery can also reach to submucosal glands. Moreover, the hCFTR transgene protein localized to the apical membrane of both ciliated and nonciliated epithelial cells, mirroring the location of wild-type CF transmembrane conductance regulator (CFTR). Aerosol delivery procedure was well tolerated by pigs without showing systemic toxicity based on the limited number of pigs tested. These results provide important insights into developing clinical strategies for human CF lung gene therapy.Molecular Therapy-Nucleic Acids (2013) 2, e127; doi:10.1038/mtna.2013.55; published online 8 October 2013.
    Molecular therapy. Nucleic acids. 10/2013; 2:e127.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lung gene therapy is being evaluated for a range of acute and chronic diseases including cystic fibrosis (CF). As these therapies approach clinical realisation it is becoming increasingly clear that the ability to efficiently deliver gene transfer agents (GTAs) to target cell populations within the lung may prove just as critical as the gene therapy formulation itself in terms of generating positive clinical outcomes. Key to the success of any aerosol gene therapy is the interaction between the GTA and nebulisation device. We evaluated the effects of aerosolisation on our preferred formulation, plasmid DNA (pDNA) complexed with the cationic liposome GL67A (pDNA/GL67A) using commercially available nebuliser devices. The relatively high viscosity (6.3 ± 0.1 cP) and particulate nature of pDNA/GL67A formulations hindered stable aerosol generation in ultrasonic and vibrating mesh nebulisers, but was not problematic in the jet nebulisers tested. Aerosol size characteristics varied significantly between devices but the AeroEclipse II nebuliser operating at 50 psi generated stable pDNA/GL67A aerosols suitable for delivery to the CF lung (MMAD 3.4 ± 0.1 µm). Importantly, biological function of pDNA/GL67A formulations was retained following nebulisation and although aerosol delivery rate was lower than other devices (0.17 ± 0.01 ml/min) the breath-actuated AeroEclipse II nebuliser generated aerosol only during the inspiratory phase and as such was more efficient than other devices with 83 ± 3% of generated aerosol available for patient inhalation. Based on these results we have selected the AeroEclipse II nebuliser for the delivery of pDNA/GL67A formulations to the lungs of CF patients as part of Phase IIa/b clinical studies.
    Human gene therapy. Clinical development. 04/2014;

Full-text (2 Sources)

Available from
Jul 4, 2014