Article

Reactive oxygen species mediate inflammatory cytokine release and EGFR-dependent mucin secretion in airway epithelial cells exposed to Pseudomonas pyocyanin

Molecular Defenses Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA.
Mucosal Immunology (Impact Factor: 7.54). 10/2010; 4(2):158-71. DOI: 10.1038/mi.2010.62
Source: PubMed

ABSTRACT Despite the long-appreciated in vivo role of the redox-active virulence factor pyocyanin in Pseudomonas airway infections and the importance of airway epithelial cells in combating bacterial pathogens, little is known about pyocyanin's effect on airway epithelial cells. We find that exposure of bronchiolar epithelial cells to pyocyanin results in MUC2/MUC5AC induction and mucin secretion through release of inflammatory cytokines and growth factors (interleukin (IL)-1β, IL-6, heparin-bound epidermal growth factor, tissue growth factor-α, tumor necrosis factor-α) that activate the epidermal growth factor receptor pathway. These changes are mediated by reactive oxygen species produced by pyocyanin. Microarray analysis identified 286 pyocyanin-induced genes in airway epithelial cells, including many inflammatory mediators elevated in cystic fibrosis (granulocyte colony-stimulating factor (G-CSF), granulocyte-monocyte CSF, chemokine (C-X-C motif) ligand 1 (CXCL1), serum amyloid, IL-23) and several novel pyocyanin-responsive genes of potential importance in the infection process (IL-24, CXCL2, CXCL3, CCL20, CXCR4). This comprehensive study uncovers numerous details of pyocyanin's proinflammatory action and establishes airway epithelial cells as key responders to this microbial toxin.

0 Bookmarks
 · 
67 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The redox-active pyocyanin (PCN) secreted by the respiratory pathogen Pseudomonas aeruginosa generates reactive oxygen species (ROS) and causes oxidative stress to pulmonary epithelial cells. Nuclear factor (erythroid-derived 2)-like 2 (NRF2) confers protection against ROS-mediated cell death by inducing the expression of detoxifying enzymes and proteins via its binding to the cis-acting antioxidant response element (ARE). However, a clear relationship between NRF2 and PCN-mediated oxidative stress has not been established experimentally. In this study, we investigated the induction of NRF2-ARE response by PCN in the pulmonary epithelial cells. We analyzed the effect of PCN on NRF2 expression and nuclear translocation in cultured human airway epithelial cells, and in a mouse model of chronic PCN exposure. NRF2-dependent transcription of antioxidative enzymes was also assessed. Furthermore, we used inhibitors to examine the involvement of EGFR and its downstream signaling components that mediate NRF2-ARE-activation in response to PCN. PCN enhances the nuclear NRF2 accumulation and activates the transcription of ARE-mediated antioxidant genes. Furthermore, PCN activates NRF2 by inducing the EGFR-phosphoinositide-3-kinase (PI3K) signaling pathway and its main downstream effectors, AKT and MEK1/2-ERK1/2 MAP kinases. Inhibition of the EGFR-PI3K signaling markedly attenuates PCN-stimulated NRF2 accumulation in the nucleus. We demonstrate for the first time that PCN-mediated oxidative stress activates the EGFR-PI3K-AKT/MEK1/2-ERK1/2 MAP kinase signaling pathway, leading to nuclear NRF2 translocation and ARE responsiveness in pulmonary epithelial cells.
    PLoS ONE 08/2013; 8(8):e72528. DOI:10.1371/journal.pone.0072528 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pyocyanin (PCN), a virulence factor produced by Pseudomonas aeruginosa, has many damaging effects on mammalian cells. Several lines of evidence suggest that this damage is primarily mediated by its ability to generate oxidative stress. However mechanisms underlying PCN-induced oxidative injury remain unclear. Although oxidative stress and subsequent MAPK signaling has been shown to modulate cell death in other models, its role in PCN-induced cytotoxicity remains unknown. Therefore the aim of this study was to investigate the role of redox-sensitive MAPK in PCN-induced toxicity in A549 cells. Here we show that PCN (50 μM) rapidly increased ERK1/2 phosphorylation after 5 minutes. Pre-treatment of A549 cells with the MEK1/2 inhibitor U0126 (10 μM) decreased PCN-induced ERK1/2 phosphorylation and protected cells against apoptosis and cell injury suggesting a role for ERK signalling. In contrast, JNK and p38 MAPK phosphorylation remained unchanged following exposure to PCN and pretreatment with either the JNK or p38 MAPK inhibitors (10 μM SP600125 and 10 μM SB203580, respectively) did not afford protection against PCN toxicity. This would suggest that PCN-induced cytotoxicity appears to occur independently of JNK and p38 MAPK signaling pathways. Finally, although we confirm that oxidative stress contributes to PCN-induced toxicity, our data suggest the contribution of oxidative stress is independent of ERK1/2 signaling. These findings may provide insight for novel targeted therapies to reduce PCN-mediated lung injury in patients with chronic P.aeruginosa respiratory infections.
    Chemico-biological interactions 12/2013; DOI:10.1016/j.cbi.2013.11.016 · 2.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pyocyanin (PCN), an extracellular product of Pseudomonas aeruginosa and a blue redox active secondary metabolite, plays an important role in invasive pulmonary infection. However, the detailed inflammatory response triggered by PCN infection in inflammatory cells (particularly macrophages), if present, remains to be clarified. To investigate the effects of PCN on macrophages, the ability of PCN to induce inflammation reaction and the signaling pathway for IL-8 release in PCN-induced differentiated U937 cells were examined. It was found that PCN increased IL-8 release and mRNA expression in Phorbol 12-myristate 13-acetate (PMA) differentiated U937 cells in both a concentration- and time-dependent manner by reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). P38 and ERK MAPKs were activated after 10 min of induction with PCN and their levels returned to baselines after 30 min by Western blotting. It was also found that within 10 min of PCN incubation, the level of p-I-kappaBalpha in the cytosol was increased, which returned to baseline level after 60 min. Meanwhile, the level of p-p65 was increased in the nuclear extract and cytosol, and maintained high in total cell lysates. The results were further confirmed by the observation that p38, ERK1/2 and NF-kappaB inhibitors inhibited PCN-induced NF-kappaB activation and attenuated PCN-induced IL-8 expression in U937 cells as a function of their concentrations. Moreover, it was shown that PCN induced oxidative stress in U937 cells and N-acetyl cysteine, an antioxidant, was able to inhibit PCN-induced IL-8 protein expression. It is concluded that PCN induces IL-8 secretion and mRNA expression in PMA-differentiated U937 cells in a concentration- and time- dependent manner. Furthermore, p38 and ERK MAPKs and NF-kappaBeta signaling pathways may be involved in the expression of IL-8 in PCN-incubated PMA-differentiated U937 cells.
    BMC Microbiology 02/2014; 14(1):26. DOI:10.1186/1471-2180-14-26 · 2.98 Impact Factor

Full-text (2 Sources)

Download
28 Downloads
Available from
May 23, 2014