An inflammasome-independent role for epithelial-expressed Nlrp3 in renal ischemia-reperfusion injury.

Department of Immunology and Microbial Sciences, The Scripps Research Institute, La Jolla, CA 92037, USA.
The Journal of Immunology (Impact Factor: 5.36). 10/2010; 185(10):6277-85. DOI: 10.4049/jimmunol.1002330
Source: PubMed

ABSTRACT Cytoplasmic innate immune receptors are important therapeutic targets for diseases associated with overproduction of proinflammatory cytokines. One cytoplasmic receptor complex, the Nlrp3 inflammasome, responds to an extensive array of molecules associated with cellular stress. Under normal conditions, Nlrp3 is autorepressed, but in the presence of its ligands, it oligomerizes, recruits apoptosis-associated speck-like protein containing a caspase recruitment domain (Asc), and triggers caspase 1 activation and the maturation of proinflammatory cytokines such as IL-1β and IL-18. Because ischemic tissue injury provides a potential source for Nlrp3 ligands, our study compared and contrasted the effects of renal ischemia in wild-type mice and mice deficient in components of the Nlrp3 inflammasome (Nlrp3(-/-) and Asc(-/-) mice). To examine the role of the inflammasome in renal ischemia-reperfusion injury (IRI) we also tested its downstream targets caspase 1, IL-1β, and IL-18. Both Nlrp3 and Asc were highly expressed in renal tubular epithelium of humans and mice, and the absence of Nlrp3, but not Asc or the downstream inflammasome targets, dramatically protected from kidney IRI. We conclude that Nlrp3 contributes to renal IRI by a direct effect on renal tubular epithelium and that this effect is independent of inflammasome-induced proinflammatory cytokine production.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Ischemia/reperfusion injury is a major cause of acute kidney injury. Improving renal repair would represent a therapeutic strategy to prevent renal dysfunction. The innate immune receptor Nlrp3 is involved in tissue injury, inflammation, and fibrosis; however, its role in repair after ischemia/reperfusion is unknown. We address the role of Nlrp3 in the repair phase of renal ischemia/reperfusion and investigate the relative contribution of leukocyte- versus renal-associated Nlrp3 by studying bone marrow chimeric mice. We found that Nlrp3 expression was most profound during the repair phase. Although Nlrp3 expression was primarily expressed by leukocytes, both leukocyte- and renal-associated Nlrp3 was detrimental to renal function after ischemia/reperfusion. The Nlrp3-dependent cytokine IL-1β remained unchanged in kidneys of all mice. Leukocyte-associated Nlrp3 negatively affected tubular apoptosis in mice that lacked Nlrp3 expression on leukocytes, which correlated with reduced macrophage influx. Nlrp3-deficient (Nlrp3KO) mice with wild-type bone marrow showed an improved repair response, as seen by a profound increase in proliferating tubular epithelium, which coincided with increased hepatocyte growth factor expression. In addition, Nlrp3KO tubular epithelial cells had an increased repair response in vitro, as seen by an increased ability of an epithelial monolayer to restore its structural integrity. In conclusion, Nlrp3 shows a tissue-specific role in which leukocyte-associated Nlrp3 is associated with tubular apoptosis, whereas renal-associated Nlrp3 impaired wound healing.
    American Journal Of Pathology 05/2014; · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The most effective way to contain cerebral ischemic injury is reperfusion; however, reperfusion itself may result in tissue injury, for which inflammatory damage is one of the main causative factors. NALP3 inflammasome is a multiprotein complex. It consists of NALP3, ASC, and caspase-1, whose function is to switch on the inflammatory process. Chrysophanol is an extract from plants of Rheum genus and it possesses many pharmacological effects including its anti-inflammation activity. In this study, the effects of chrysophanol in cerebral ischemia/reperfusion and the potential mechanisms were investigated. Male CD1 mice were subject to transient middle cerebral artery occlusion (tMCAO). The NALP3 inflammasome activation status and its dynamic expression during the natural inflammatory response induced by tMCAO were first profiled. The neuroprotective effects of chrysophanol were then assessed and the potential mechanisms mediating the observed neuroprotection were then explored. Physical parameters including neurological deficit, infarct size, brain edema, and BBB permeability were measured at 24 h after tMCAO. Confocal microscopy, Western blotting, immunohistochemistry, and qRT-PCR techniques were utilized to analyze the expression of NALP3 inflammasome and IL-1 β . Our results indicated that the brain tissue damage during cerebral ischemia/reperfusion is accompanied by NALP3 inflammasome activation. Chrysophanol could inhibit the activation of NALP3 inflammasome and protect cerebral ischemic stroke.
    Mediators of Inflammation 01/2014; 2014:370530. · 2.42 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Interleukin (IL)-1β contributes to renal injury in immune complex glomerulonephritis. However, production of mature IL-1β depends on activation of the inflammasome that cleaves pro-IL-1β into its secretable form. A functional role of the NLRP3-containing inflammasome, which responds to various endogenous danger signals, was found in tubulointerstitial nephropathies, but its function in glomerular disease has not been established. To determine whether NLRP3 and its adapter molecule ASC contribute to glomerulonephritis, we induced T-cell-dependent autologous nephrotoxic serum nephritis in Nlrp3- and Asc-deficient mice. Renal expression of NLRP3/ASC inflammasome components and pro-IL-1β increased during nephrotoxic serum nephritis and was abundant in renal dendritic cells. This was associated with renal production of mature IL-1β, indicating inflammasome activation. Nlrp3 and Asc deficiency significantly attenuated glomerular injury, renal leukocyte infiltration, and T-cell activation. Production of mature IL-1β was abrogated in Asc-deficient mice, consistent with a loss of inflammasome-dependent IL-1β activation. Surprisingly, renal IL-1β secretion remained intact in Nlrp3-deficient mice, indicating noncanonical pro-inflammatory effects of NLRP3 in autologous nephrotoxic serum nephritis. This may include NLRP3-mediated glomerular release of pro-inflammatory high-mobility group box 1 protein as a noncanonical function of NLRP3/ASC in glomerulonephritis. Thus, therapeutic blockade of the NLRP3/ASC/IL-1β axis may be beneficial in glomerulonephritis.Kidney International advance online publication, 7 May 2014; doi:10.1038/ki.2014.161.
    Kidney International 05/2014; · 8.52 Impact Factor

Full-text (2 Sources)

Available from
May 31, 2014