An Inflammasome-Independent Role for Epithelial-Expressed Nlrp3 in Renal Ischemia-Reperfusion Injury

Department of Immunology and Microbial Sciences, The Scripps Research Institute, La Jolla, CA 92037, USA.
The Journal of Immunology (Impact Factor: 4.92). 10/2010; 185(10):6277-85. DOI: 10.4049/jimmunol.1002330
Source: PubMed


Cytoplasmic innate immune receptors are important therapeutic targets for diseases associated with overproduction of proinflammatory cytokines. One cytoplasmic receptor complex, the Nlrp3 inflammasome, responds to an extensive array of molecules associated with cellular stress. Under normal conditions, Nlrp3 is autorepressed, but in the presence of its ligands, it oligomerizes, recruits apoptosis-associated speck-like protein containing a caspase recruitment domain (Asc), and triggers caspase 1 activation and the maturation of proinflammatory cytokines such as IL-1β and IL-18. Because ischemic tissue injury provides a potential source for Nlrp3 ligands, our study compared and contrasted the effects of renal ischemia in wild-type mice and mice deficient in components of the Nlrp3 inflammasome (Nlrp3(-/-) and Asc(-/-) mice). To examine the role of the inflammasome in renal ischemia-reperfusion injury (IRI) we also tested its downstream targets caspase 1, IL-1β, and IL-18. Both Nlrp3 and Asc were highly expressed in renal tubular epithelium of humans and mice, and the absence of Nlrp3, but not Asc or the downstream inflammasome targets, dramatically protected from kidney IRI. We conclude that Nlrp3 contributes to renal IRI by a direct effect on renal tubular epithelium and that this effect is independent of inflammasome-induced proinflammatory cytokine production.

Download full-text


Available from: James L Mueller, Oct 10, 2015
51 Reads
  • Source
    • "These results suggest that obesity-induced NALP3 inflammasomes formation and activation occur in glomeruli of mice. Although this type of inflammasome was first characterized in immune cells, recent studies have demonstrated that it can be detected in various nonimmune cells including intrinsic glomerular cells [37] [39] [52] [53] and other residential cells in the brain, heart and vessels [54] [55]. To our knowledge, these results represent the first experimental evidence demonstrating that obesity activates NALP3 inflammasomes in glomeruli of mice, which is an important pathogenic mechanism responsible for glomerular injury during obesity. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Inflammasome, an intracellular inflammatory machinery, has been reported to be involved in a variety of chronic degenerative diseases such as atherosclerosis, autoinflammatory diseases and Alzheimer's disease. The present study hypothesized that the formation and activation of inflammasomes associated with apoptosis associated speck-like protein (ASC) are an important initiating mechanism resulting in obesity-associated podocyte injury and consequent glomerular sclerosis. To test this hypothesis, Asc gene knockout (Asc−/−), wild type (Asc+/+) and intrarenal Asc shRNA-transfected wild type (Asc shRNA) mice were fed a high fat diet (HFD) or normal diet (ND) for 12 weeks to produce obesity and associated glomerular injury. Western blot and RT-PCR analyses demonstrated that renal tissue Asc expression was lacking in Asc−/− mice or substantially reduced in Asc shRNA transfected mice compared to Asc+/+ mice. Confocal microscopic and co-immunoprecipitation analysis showed that the HFD enhanced the formation of inflammasome associated with Asc in podocytes as shown by colocalization of Asc with Nod-like receptor protein 3 (Nalp3). This inflammasome complex aggregation was not observed in Asc−/− and local Asc shRNA-transfected mice. The caspase-1 activity, IL-1β production and glomerular damage index (GDI), were also significantly attenuated in Asc−/− and Asc shRNA-transfected mice fed the HFD. This decreased GDI in Asc−/− and Asc shRNA transfected mice on the HFD was accompanied by attenuated proteinuria, albuminuria, foot process effacement of podocytes and loss of podocyte slit diaphragm molecules. In conclusion, activation and formation of inflammasomes in podocytes are importantly implicated in the development of obesity-associated glomerular injury.
    Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 05/2014; 1843(5). DOI:10.1016/j.bbamcr.2014.01.033 · 5.02 Impact Factor
  • Source
    • "Whilst some reports describe a protective effect of IL-1 receptor blockade with Anakinra in ischemia-reperfusion injury [45,81], others demonstrate no benefit on renal injury responses [123]. This may be due to NLRP3 mediated injury that is independent of inflammasome activity [123]. In such circumstances, pharmacological inhibition of downstream targets may be less effective. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The inflammasome is a large, multiprotein complex that drives proinflammatory cytokine production in response to infection and tissue injury. Pattern recognition receptors that are either membrane bound or cytoplasmic trigger inflammasome assembly. These receptors sense danger signals including damage-associated molecular patterns and pathogen-associated molecular patterns (DAMPS and PAMPS respectively). The best-characterized inflammasome is the NLRP3 inflammasome. On assembly of the NLRP3 inflammasome, post-translational processing and secretion of pro-inflammatory cytokines IL-1beta and IL-18 occurs; in addition, cell death may be mediated via caspase-1. Intrinsic renal cells express components of the inflammasome pathway. This is most prominent in tubular epithelial cells and, to a lesser degree, in glomeruli. Several primary renal diseases and systemic diseases affecting the kidney are associated with NLRP3 inflammasome/IL-1beta/IL-18 axis activation. Most of the disorders studied have been acute inflammatory diseases. The disease spectrum includes ureteric obstruction, ischaemia reperfusion injury, glomerulonephritis, sepsis, hypoxia, glycerol-induced renal failure, and crystal nephropathy. In addition to mediating renal disease, the IL-1/ IL-18 axis may also be responsible for development of CKD itself and its related complications, including vascular calcification and sepsis. Experimental models using genetic deletions and/or receptor antagonists/antiserum against the NLRP3 inflammasome pathway have shown decreased severity of disease. As such, the inflammasome is an attractive potential therapeutic target in a variety of renal diseases.
    BMC Nephrology 01/2014; 15(1):21. DOI:10.1186/1471-2369-15-21 · 1.69 Impact Factor
  • Source
    • "After 14 days no differences in renal injury could be found anymore as tubular injury was at maximum in both groups. In contrast to these results, we [9] and others [17] previously found that the Nlrp3 inflammasome enhanced acute kidney injury and dysfunction following ischemia reperfusion injury. These opposite effects of Nlrp3 deficiency in acute and progressive renal injury are also seen in mice deficient for TLR4 [6], [24]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Progressive renal disease is characterized by tubulo-interstitial injury with ongoing inflammation and fibrosis. The Nlrp3 inflammasome contributes to these pathophysiological processes through its canonical effects in cytokine maturation. Nlrp3 may additionally exert inflammasome-independent effects following tissue injury. Hence, in this study we investigated potential non-canonical effects of Nlrp3 following progressive renal injury by subjecting WT and Nlrp3-deficient (−/−) mice to unilateral ureter obstruction (UUO). Our results revealed a progressive increase of renal Nlrp3 mRNA in WT mice following UUO. The absence of Nlrp3 resulted in enhanced tubular injury and dilatation and an elevated expression of injury biomarker NGAL after UUO. Moreover, interstitial edema was significantly elevated in Nlrp3−/− mice. This could be explained by increased intratubular pressure and an enhanced tubular and vascular permeability. In accordance, renal vascular leakage was elevated in Nlrp3−/− mice that associated with reduced mRNA expression of intercellular junction components. The decreased epithelial barrier function in Nlrp3−/− mice was not associated with increased apoptosis and/or proliferation of renal epithelial cells. Nlrp3 deficiency did not affect renal fibrosis or inflammation. Together, our data reveal a novel non-canonical effect of Nlrp3 in preserving renal integrity and protection against early tubular injury and interstitial edema following progressive renal injury.
    PLoS ONE 01/2014; 9(1):e85775. DOI:10.1371/journal.pone.0085775 · 3.23 Impact Factor
Show more