Prevalence, mutation spectrum and phenotypic variability in Norwegian patients with Limb Girdle Muscular Dystrophy 2I

Department of Habilitation, University Hospital of North Norway, Tromsø, Norway.
Neuromuscular Disorders (Impact Factor: 2.64). 10/2010; 21(1):41-6. DOI: 10.1016/j.nmd.2010.08.008
Source: PubMed


Mutations in the FKRP (Fukutin Related Protein) gene produce a range of phenotypes including Limb Girdle Muscular Dystrophy Type 2I (LGMD2I). In order to investigate the prevalence, the mutation spectrum and possible genotype-phenotype correlation, we studied a cohort of Norwegian patients with LGMD2I, ascertained in a 4-year period. In this retrospective study of genetically tested patients, we identified 88 patients from 69 families, who were either homozygous or compound heterozygous for FKRP mutations. This gives a minimum prevalence of 1/54,000 and a corresponding carrier frequency of 1/116 in the Norwegian population. Seven different FKRP mutations, including three novel changes, were detected. Seventy-six patients were homozygous for the common c.826C>A mutation. These patients had later disease onset than patients who were compound heterozygous - 14.0 vs. 6.1 years. We detected substantial variability in disease severity among homozygous patients.

4 Reads
  • Source
    • "LGMD2I mutations appear to be a relatively common cause of LGMD, accounting for at least 10% of all LGMD with either severe or mild phenotypes (47, 48). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Limb-girdle muscular dystrophies (LGMD) are a highly heterogeneous group of muscle disorders, which first affect the voluntary muscles of the hip and shoulder areas. The definition is highly descriptive and less ambiguous by exclusion: non-Xlinked, non-FSH, non-myotonic, non-distal, nonsyndromic, and non-congenital. At present, the genetic classification is becoming too complex, since the acronym LGMD has also been used for a number of other myopathic disorders with overlapping phenotypes. Today, the list of genes to be screened is too large for the gene-by-gene approach and it is well suited for targeted next generation sequencing (NGS) panels that should include any gene that has been so far associated with a clinical picture of LGMD. The present review has the aim of recapitulating the genetic basis of LGMD ordering and of proposing a nomenclature for the orphan forms. This is useful given the pace of new discoveries. Thity-one loci have been identified so far, eight autosomal dominant and 23 autosomal recessive. The dominant forms (LGMD1) are: LGMD1A (myotilin), LGMD1B (lamin A/C), LGMD1C (caveolin 3), LGMD1D (DNAJB6), LGMD1E (desmin), LGMD1F (transportin 3), LGMD1G (HNRPDL), LGMD1H (chr. 3). The autosomal recessive forms (LGMD2) are: LGMD2A (calpain 3), LGMD2B (dysferlin), LGMD2C (γ sarcoglycan), LGMD2D (α sarcoglycan), LGMD2E (β sarcoglycan), LGMD2F (δ sarcoglycan), LGMD2G (telethonin), LGMD2H (TRIM32), LGMD2I (FKRP), LGMD2J (titin), LGMD2K (POMT1), LGMD2L (anoctamin 5), LGMD2M (fukutin), LGMD2N (POMT2), LGMD2O (POMTnG1), LGMD2P (dystroglycan), LGMD2Q (plectin), LGMD2R (desmin), LGMD2S (TRAPPC11), LGMD2T (GMPPB), LGMD2U (ISPD), LGMD2V (Glucosidase, alpha ), LGMD2W (PINCH2).
    Acta myologica: myopathies and cardiomyopathies: official journal of the Mediterranean Society of Myology / edited by the Gaetano Conte Academy for the study of striated muscle diseases 05/2014; 33(1):1-12.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This review is an up-to-date analysis of the genetic diagnosis and therapeutic strategies for limb girdle muscular dystrophies (LGMDs). LGMDs are an example of both clinical and genetic heterogeneity. Clinically, by the description of non-LGMD phenotypes associated with LGMD genes and of LGMD phenotypes associated with originally non-LGMD disease genes; and genetically, by the description of new LGMD genes that further increase the diagnostic complexity. Moreover, new powerful approaches for DNA analysis, such as exome sequencing, promise to revolutionize the field of heterogeneous genetic diseases, also providing information about the true penetrance of LGMD mutations. The recent inputs on novel pathogenic mechanisms and pathways in LGMD will suggest novel therapeutic approaches and future clinical trials. In addition, therapeutic approaches of gene and cell delivery into animal models show promising results that will be translated into clinical trials. The genetic diagnosis of LGMD from the present home-made algorithms will move toward high-throughput diagnostic strategies based on next-generation sequencing (NGS) technologies. As therapy, new powerful drug approaches based on recent pathogenetic findings will be pushed to clinical trials. In addition, novel more efficient and safer viral vectors for gene delivery will be proposed.
    Current opinion in neurology 08/2011; 24(5):429-36. DOI:10.1097/WCO.0b013e32834aa38d · 5.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in the fukutin-related protein gene FKRP (MIM *606596) cause a form of congenital muscular dystrophy (MDC1C) and also limb girdle muscular dystrophy type 2I (LGMD2I). Exercise-induced myoglobinuria, frequently occurring in metabolic myopathies, has been described in Becker muscular dystrophy and in a few cases of LGMD. To describe that episodes with myoglobinuria, often associated with exercise-induced myalgia, may be common and a presenting symptom in patients with LGMD2I. Data on episodes of suspected myoglobinuria and myalgia were collected from the patient records on 14 patients with a diagnosis of LGMDI. Five LGMD2I patients reported recurrent episodes of dark urine and myalgia after exercise, and in three of them, this was the only symptom for several years. We conclude that episodes compatible with exercise-induced myoglobinuria may be frequent in LGMD2I.
    Acta Neurologica Scandinavica 10/2011; 125(4):285-7. DOI:10.1111/j.1600-0404.2011.01608.x · 2.40 Impact Factor
Show more