Article

Photocaged Morpholino Oligomers for the Light-Regulation of Gene Function in Zebrafish and Xenopus Embryos

Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States.
Journal of the American Chemical Society (Impact Factor: 11.44). 10/2010; 132(44):15644-50. DOI: 10.1021/ja1053863
Source: PubMed

ABSTRACT Morpholino oligonucleotides, or morpholinos, have emerged as powerful antisense reagents for evaluating gene function in both in vitro and in vivo contexts. However, the constitutive activity of these reagents limits their utility for applications that require spatiotemporal control, such as tissue-specific gene disruptions in embryos. Here we report a novel and efficient synthetic route for incorporating photocaged monomeric building blocks directly into morpholino oligomers and demonstrate the utility of these caged morpholinos in the light-activated control of gene function in both cell culture and living embryos. We demonstrate that a caged morpholino that targets enhanced green fluorescent protein (EGFP) disrupts EGFP production only after exposure to UV light in both transfected cells and living zebrafish (Danio rerio) and Xenopus frog embryos. Finally, we show that a caged morpholino targeting chordin, a zebrafish gene that yields a distinct phenotype when functionally disrupted by conventional morpholinos, elicits a chordin phenotype in a UV-dependent manner. Our results suggest that photocaged morpholinos are readily synthesized and highly efficacious tools for light-activated spatiotemporal control of gene expression in multiple contexts.

0 Followers
 · 
171 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Morpholino oligomers (MOs) have been widely used to knock down specific genes in zebrafish, but their constitutive activities limit their experimental applications for studying a gene with multiple functions or within a gene network. We report herein a new design and synthesis of caged circular MOs (caged cMOs) with two ends linked by a photocleavable moiety. These caged cMOs were successfully used to photomodulate β-catenin-2 and no tail expression in zebrafish embryos.
    Nucleic Acids Research 11/2012; 40(21):11155-11162. DOI:10.1093/nar/gks840 · 8.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Spectrally differentiated caged morpholino oligonucleotides (cMOs) and wavelength-selective illumination have been used to sequentially inactivate organismal gene function. The efficacy of these reverse-genetic chemical probes has been demonstrated in zebrafish embryos, and these reagents have been employed to examine the mechanisms of mesoderm patterning.
    Angewandte Chemie International Edition 09/2014; DOI:10.1002/ange.201405355 · 11.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A complete set of new photolabile nucleoside phosphoramidites were synthesized, then site-specifically incorporated into sense or antisense strands of siRNA for phosphate caging. Single caging modification was made along siRNA strands and their photomodulation of gene silencing were examined by using the firefly luciferase reporter gene. Several key phosphate positions were then identified. Furthermore, multiple caging modifications at these key positions led to significantly enhanced photomodulation of gene silencing activity, suggesting a synergistic effect. The caging group on both the terminally phosphate-caged siRNA and the single-stranded caged RNA has comparatively high stability, whereas hydrolysis of the caged group from the internally caged siRNA was observed, irrespective of the presence of Mg2+. Molecular dynamic simulations demonstrated that enhanced hydrolysis of the caging group on internally phosphate-caged siRNAs was due to easy fragmentation of the caging group upon formation of the pentavalent intermediate of the phosphotriester with attack by water. The caging group in the terminally phosphate-caged siRNA or single-stranded caged RNA prefers to form π–π stacks with nearby nucleobases. In addition to providing explanations for previous observations, this study sheds further light on the design of caged oligonucleotides and indicates the direction of future development of nucleic acid drugs with phosphate modifications.
    Chemistry - A European Journal 09/2014; 20(38). DOI:10.1002/chem.201403430 · 5.70 Impact Factor

Full-text

Download
98 Downloads
Available from
Jun 5, 2014