Cancer epigenetics.

Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA.
CA A Cancer Journal for Clinicians (Impact Factor: 153.46). 10/2010; 60(6):376-92. DOI: 10.3322/caac.20085
Source: PubMed

ABSTRACT Epigenetics refers to stable alterations in gene expression with no underlying modifications in the genetic sequence and is best exemplified by differentiation, in which multiple cell types diverge physiologically despite a common genetic code. Interest in this area of science has grown over the past decades, especially since it was found to play a major role in physiologic phenomena such as embryogenesis, imprinting, and X chromosome inactivation, and in disease states such as cancer. The latter had been previously thought of as a disease with an exclusive genetic etiology. However, recent data have demonstrated that the complexity of human carcinogenesis cannot be accounted for by genetic alterations alone, but also involves epigenetic changes in processes such as DNA methylation, histone modifications, and microRNA expression. In turn, these molecular alterations lead to permanent changes in the expression of genes that regulate the neoplastic phenotype, such as cellular growth and invasiveness. Targeting epigenetic modifiers has been referred to as epigenetic therapy. The success of this approach in hematopoietic malignancies validates the importance of epigenetic alterations in cancer, not only at the therapeutic level but also with regard to prevention, diagnosis, risk stratification, and prognosis.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Bladder cancer is one of the most common cancers worldwide. Fibulin-1, a multi-functional extracellular matrix protein, has been demonstrated to be involved in many kinds of cancers, while its function in bladder cancer remains unclear. So here we investigated the expression and function of fibulin-1 in Bladder cancer.
    BMC Cancer 09/2014; 14(1):677. · 3.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hepatocellular carcinoma (HCC) is the world's fifth most common cancer and second leading cause of cancer-related death in Taiwan. Over 600,000 HCC patients die each year worldwide despite recent advances in surgical techniques and medical treatments. Epigenetic regulations including DNA methylation and histone modification control gene expressions and play important roles during tumorigenesis. This study evaluates association between histone-modifying genes and prognosis of HCC to ferret out new diagnostic markers. We collected 50 paired HCC and adjacent non-cancerous tissues from Taiwanese patients for survey by RT-qPCR and tissue microarray-based immunohistochemistry (TMA-based IHC) staining. RT-qPCR data showed four of twenty-four genes over eightfold up-regulated in tumor tissues: e.g., histone phosphorylation gene-ARK2, methylation genes-G9a, SUV39H2, and EZH2 (n = 50, all p < 0.0001). Results of TMA-based IHC staining showed proteins of ARK2, EZH2, G9a, and SUV39H2 also overexpressed in tumor tissues. Staining intensity of SUV39H2 correlated with HCV infection (p = 0.025). We further restricted the analysis only in tumor tissues, we found EZH2 staining intensity associated with tumor stage (p = 0.016) and survival (p = 0.007); SUV39H2 intensity associated with tumor stage (p = 0.044). Our findings indicate overexpression of histone-modifying genes EZH2 and SUV39H2 associated with prognosis of HCC cases. EZH2 expression can serve as a novel prognostic biomarker during HCC progression among Taiwanese.
    International journal of clinical and experimental pathology. 01/2014; 7(5):2496-507.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DNA methylation has an important role in the development of carcinomas. As a metastasis suppressor gene, Raf kinase inhibitory protein (RKIP) suppresses tumor cell invasion and metastasis. In the present study, the associations between RKIP protein expression and promoter methylation with clinicopathological parameters, prognosis and survival rates in gastric adenocarcinoma were investigated. RKIP protein expression and promoter methylation were measured in 135 cases of surgically resected gastric adenocarcinoma specimens and corresponding normal tissues using immunohistochemistry and methylation-specific polymerase chain reaction, respectively. Kaplan-Meier analyses were performed to analyze the patient survival rate. Prognostic factors were determined using multivariate Cox analysis. RKIP promoter methylation was detected in 48.9% of gastric carcinoma tissues and 5.17% of adjacent tissues (P<0.05). RKIP protein expression was detected in 43.0% of gastric carcinoma tissues and 91.1% of adjacent tissues (P<0.05). The protein expression levels and promoter methylation of RKIP were shown to correlate with pathological staging, Union for International Cancer Control-stage, tumor differentiation and lymph node metastasis (P<0.05). In addition, the protein expression of RKIP in gastric carcinomas was demonstrated to be associated with promoter methylation of RKIP. Survival analysis of gastric carcinoma patients revealed that promoter methylation in RKIP-positive tumors correlated with a significantly shorter survival time when compared with RKIP-negative tumors (P=0.0002, using the log-rank test). Using multivariate Cox analysis, promoter methylation of RKIP was shown to be an independent prognostic factor (P=0.033). These results indicated that abnormal promoter methylation of RKIP may be one cause of downregulated RKIP expression. Downregulation of RKIP expression was shown to correlate with the incidence and development of gastric carcinomas. Thus, abnormal promoter methylation of RKIP may be a valuable biomarker for estimating gastric carcinoma prognosis.
    Experimental and therapeutic medicine 09/2014; 8(3):844-850. · 0.34 Impact Factor

Full-text (2 Sources)

1 Download
Available from
Nov 24, 2014