Article

Conditioned fear is modulated by D2 receptor pathway connecting the ventral tegmental area and basolateral amygdala.

Laboratório de Psicobiologia, Faculdade de Filosofia, Ciências e Letras, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
Neurobiology of Learning and Memory (Impact Factor: 4.04). 10/2010; 95(1):37-45. DOI: 10.1016/j.nlm.2010.10.005
Source: PubMed

ABSTRACT Excitation of the mesocorticolimbic pathway, originating from dopaminergic neurons in the ventral tegmental area (VTA), may be important for the development of exaggerated fear responding. Among the forebrain regions innervated by this pathway, the amygdala is an essential component of the neural circuitry of conditioned fear. The functional role of the dopaminergic pathway connecting the VTA to the basolateral amygdala (BLA) in fear and anxiety has received little attention. In vivo microdialysis was performed to measure dopamine levels in the BLA of Wistar rats that received the dopamine D(2) agonist quinpirole (1 μg/0.2 μl) into the VTA and were subjected to a fear conditioning test using a light as the conditioned stimulus (CS). The effects of intra-BLA injections of the D(1) antagonist SCH 23390 (1 and 2 μg/0.2 μl) and D(2) antagonist sulpiride (1 and 2 μg/0.2 μl) on fear-potentiated startle (FPS) to a light-CS were also assessed. Locomotor performance was evaluated by use of open-field and rotarod tests. Freezing and increased dopamine levels in the BLA in response to the CS were both inhibited by intra-VTA quinpirole. Whereas intra-BLA SCH 23390 did not affect FPS, intra-BLA sulpiride (2 μg) inhibited FPS. Sulpiride's ability to decrease FPS cannot be attributed to nonspecific effects because this drug did not affect motor performance. These findings indicate that the dopamine D(2) receptor pathway connecting the ventral tegmental area and the basolateral amygdala modulates fear and anxiety and may be a novel pharmacological target for the treatment of anxiety.

0 Bookmarks
 · 
91 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A reduction of dopamine release or D2 receptor blockade in the terminal fields of the mesolimbic system clearly reduces conditioned fear. Injections of haloperidol, a preferential D2 receptor antagonist, into the inferior colliculus (IC) enhance the processing of unconditioned aversive information. However, a clear characterization of the interplay of D2 receptors in the mediation of unconditioned and conditioned fear is still lacking.
    PLoS ONE 08/2014; 9(8):e104228. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The precise mechanisms underlying how emotions change breathing patterns remain unclear, but dopamine is a candidate neurotransmitter in the process of emotion-associated breathing. We investigated whether basal dopamine release occurs in the basolateral amygdala (BLA), where sensory-related inputs are received and lead to fear or anxiety responses, and whether D1- and D2-like receptor antagonists affect breathing patterns and dopamine release in the BLA. Adult male mice (C57BL/6 N) were perfused with artificial cerebrospinal fluid, a D1-like receptor antagonist (SCH 23390), or a D2-like receptor antagonist ((S)-(-)-sulpiride) through a microdialysis probe in the BLA. Respiratory variables were measured using a double-chamber plethysmograph. Dopamine release was measured by an HPLC. Perfusion of (S)-(-)-sulpiride in the BLA, not SCH 23390, specifically decreased respiratory rate without changes in local release of dopamine. These results suggest that basal dopamine release in the BLA, at least partially, increases respiratory rates only through post-synaptic D2-like receptors, not autoreceptors, which might be associated with emotional responses.
    Respiratory Physiology & Neurobiology 10/2014; · 1.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ventral tegmental area (VTA) in the brain's reward circuitry is composed of a heterogeneous population of dopamine, GABA, and glutamate neurons that play important roles in mediating mood-related functions including depression. These neurons project to different brain regions, including the nucleus accumbens (NAc), the medial prefrontal cortex (mPFC), and the amygdala. The functional understanding of these projection pathways has been improved since the extensive use of advanced techniques such as viral-mediated gene transfer, cell-type specific neurophysiology and circuit-probing optogenetics. In this article, we will discuss the recent progress in understanding these VTA projection-specific functions, focusing on mood-related disorders. This article is part of a Special Issue entitled: [Ventral Tegmentum & Dopamine.
    Neuroscience 06/2014; · 3.33 Impact Factor