The transcriptomic response to viral infection of two strains of shrimp (Litopenaeus vannamei).

Hollings Marine Laboratory, College of Charleston, Biology Department, Charleston, SC, USA.
Developmental and comparative immunology (Impact Factor: 3.29). 10/2010; 35(3):241-6. DOI: 10.1016/j.dci.2010.10.001
Source: PubMed

ABSTRACT The extent to which data-intensive studies of the transcriptome can provide insight into biological responses is not well defined, especially in the case of species (such as shrimp) where much physiological and biochemical knowledge is missing. In this study we took a transcriptomic approach to gain insight into the response to viral infection of two strains of the Pacific whiteleg shrimp (Litopenaeus vannamei) that differ in their resistance to Taura Syndrome Virus (TSV). Changes in gene expression in the hepatopancreas following infection with TSV and Yellow Head Virus (YHV) were assessed using a cDNA microarray containing 2469 putative unigenes. The null hypothesis tested was that significant differences between the transcriptomic responses to viral infection of resistant and sensitive strains would not be detected. This hypothesis was broadly rejected, with the most surprising observation being that the baseline (control, unchallenged) sensitive and resistant strains expressed distinguishable transcriptomic signatures. The resistant line was pre-disposed to lower expression of genes encoding viral (and host) proteins. Many of the genes differentiating resistant and sensitive lines are involved in protein metabolism, cellular trafficking, immune defense and stress response, although it was not possible to clearly identify candidate genes responsible for TSV resistance. In contrast to TSV challenge, YSV either failed to perturb the host transcriptome or created a "confused" response that was difficult to interpret.

  • [Show abstract] [Hide abstract]
    ABSTRACT: In the present study, transcriptome of nitrite-exposed Litopenaeus vannamei was performed using a newly developed high-throughput sequencing technology (Illumina RNA-seq). As many as 42,336 unigenes were generated with 561 bp of average length and 736 bp of unigene N50 after filtering and assembly. These unigenes from the de novo assembly were further annotated using BLAST and BLAST2GO softwares. A total of 23,532 unigenes were unambiguous alignments to the reference when BLAST against non-redundant protein sequence (Nr), non-redundant nucleotide (Nt), Swiss-Prot, Gene Ontology database (GO), Clusters of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases available at NCBI. Numerous candidate genes associated with immune response, detoxification, apoptosis pathway were identified. Ten candidate genes related to immune responses and apoptosis were selected for validating the results of assembly and annotation by real-time quantitative PCR. Results revealed that the expressions of all these ten genes were up-regulated after nitrite exposure. Combining to our previous study, we speculated that all these selected genes may be involved in the response to nitrite stress. The study shows a systematic overview of the transcriptome analysis in Litopenaeus vannamei, and provides valuable gene information for studying molecular mechanisms under nitrite exposure.
    Fish &amp Shellfish Immunology 09/2013; · 2.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Outbreak of Taura syndrome virus (TSV) is one of the major pathogens of the Pacific white shrimp Litopenaeus vannamei. Although selective breeding for improvement of TSV resistance in L. vannamei has been successfully developed and has led to a great benefit to the shrimp farming industry worldwide. The molecular mechanisms underlying the viral resistance in shrimp remain largely unknown. In the present study, we conducted the first transcriptomic profiling of host responses in hemolymph and hemocytes in order to identify the differentially expressed genes associated with resistance to TSV in L. vannamei. High-throughput RNA-Seq was employed, obtaining 193.6 and 171.2 million high-quality Illumina reads from TSV-resistant and susceptible L.vannamei lines respectively. A total of 61,937 contigs were generated with an average length of 546.26bp. BLASTX-based gene annotation (E-value <10(-5)) allowed the identification of 12,398 unique proteins against the NCBI non-redundant NR database. In addition, comparison of digital gene expression between resistant and susceptible strains revealed 1,374 significantly differentially expressed contigs (representing 697 unigenes). Gene pathway analysis of the differentially expressed gene set highlighted several putative genes involved in the immune response activity including (1) pathogen/antigen recognition including immune regulator, adhesive protein and signal transducer; (2) coagulation; (3) proPO pathway cascade; (4) antioxidation; and (5) protease. The expression patterns of 22 differentially expressed genes involving immune response were validated by quantitative real-time RT-PCR (average correlation coefficients 0.94,p-value<0.001). Our results provide valuable information on gene functions associated with resistance to TSV in L. vannamei.
    Developmental and comparative immunology 08/2013; · 3.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a new transcriptome assembly of the Pacific whiteleg shrimp (Litopenaeus vannamei), the species most farmed for human consumption. Its functional annotation, a substantial improvement over previous ones, is provided freely. RNA-Seq with Illumina HiSeq technology was used to analyze samples extracted from shrimp abdominal muscle, hepatopancreas, gills and pleopods. We used the Trinity and Trinotate software suites for transcriptome assembly and annotation, respectively. The quality of this assembly and the affiliated targeted homology searches greatly enrich the curated transcripts currently available in public databases for this species. Comparison with the model arthropod Daphnia allows some insights into defining characteristics of decapod crustaceans. This large-scale gene discovery gives the broadest depth yet to the annotated transcriptome of this important species and should be of value to ongoing genomics and immunogenetic resistance studies in this shrimp of paramount global economic importance.
    Scientific Reports 11/2014; 4:7081. · 5.08 Impact Factor