Beyond the dopamine receptor: novel therapeutic targets for treating schizophrenia

Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, USA.
Dialogues in clinical neuroscience 08/2010; 12(3):359-82.
Source: PubMed

ABSTRACT All current drugs approved to treat schizophrenia appear to exert their antipsychotic effects through blocking the dopamine D2 receptor. Recent meta-analyses and comparative efficacy studies indicate marginal differences in efficacy of newer atypical antipsychotics and the older drugs, and little effects on negative and cognitive symptoms. This review integrates findings from postmortem, imaging, and drug-challenge studies to elucidate a corticolimbic "pathologic circuit" in schizophrenia that may be particularly relevant to the negative symptoms and cognitive impairments of schizophrenia. Potential sites for pharmacologic intervention targeting glutatatergic, GABAergic, and cholinergic neurotransmission to treat these symptoms of schizophrenia are discussed.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Various types of antipsychotics have been developed for the treatment of schizophrenia since the accidental discovery of the antipsychotic activity of chlorpromazine. Although all clinically effective antipsychotic agents have common properties to interact with the dopamine D2 receptor (D2R) activation, their precise mechanisms of action remain elusive. Antipsychotics are well known to induce transcriptional changes of immediate early genes (IEGs), raising the possibility that gene expressions play an essential role to improve psychiatric symptoms. Here, we report that while different classes of antipsychotics have complex pharmacological profiles against D2R, they share common transcriptome fingerprint (TFP) profile of IEGs in the murine brain in vivo by quantitative real-time PCR (qPCR). Our data showed that various types of antipsychotics with a profound interaction of D2R including haloperidol (antagonist), olanzapine (antagonist), and aripiprazole (partial agonist) all share common spatial TFPs closely homologous to those of D2R antagonist sulpiride, and elicited greater transcriptional responses in the striatum than in the nucleus accumbens. Meanwhile, D2R agonist quinpirole and propsychotic NMDA antagonists such as MK-801 and phencyclidine (PCP) exhibited the contrasting TFP profiles. Clozapine and propsychotic drug methamphetamine (MAP) displayed peculiar TFPs that reflect their unique pharmacological property. Our results suggest that transcriptional responses are conserved across various types of antipsychotics clinically effective in positive symptoms of schizophrenia and also show that temporal and spatial TFPs may reflect the pharmacological features of the drugs. Thus, we propose that a TFP approach is beneficial to evaluate novel drug candidates for antipsychotic development.
    PLoS ONE 02/2015; 10(2):e0118510. DOI:10.1371/journal.pone.0118510 · 3.53 Impact Factor
  • L Encéphale 01/2015; 41(1). DOI:10.1016/j.encep.2014.12.001 · 0.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: NMDA receptor (NMDAR) hypofunction is a compelling hypothesis for the pathophysiology of schizophrenia, because in part, NMDAR antagonists cause symptoms in healthy adult subjects that resemble schizophrenia. Therefore, NMDAR antagonists have been used as a method to induce NMDAR hypofunction in animals as a pharmacological model of schizophrenia. Serine racemase-null mutant (SR-/-) mice display constitutive NMDAR hypofunction due to the lack of d-serine. SR-/- mice have deficits in tropomyosin-related kinase receptor (TrkB)/Akt signaling and activity regulated cytoskeletal protein (Arc) expression, which mirror what is observed in schizophrenia. Thus, we analyzed these signaling pathways in MK801 sub-chronically (0.15mg/kg; 5days) treated adult wild-type mice. We found that in contrast to SR-/- mice, the activated states of downstream signaling molecules, but not TrkB, increased in MK801 treated mice. Furthermore, there is an age-dependent change in the behavioral reaction of people to NMDAR antagonists. We therefore administered the same dosing regimen of MK801 to juvenile mice and compared them to juvenile SR-/- mice. Our findings demonstrate that pharmacological NMDAR antagonism has different effects on TrkB/Akt signaling than genetically-induced NMDAR hypofunction. Given the phenotypic disparity between the MK801 model and schizophrenia, our results suggest that SR-/- mice more accurately reflect NMDAR hypofunction in schizophrenia. Copyright © 2014. Published by Elsevier B.V.
    Schizophrenia Research 01/2015; 162(1-3). DOI:10.1016/j.schres.2014.12.034 · 4.43 Impact Factor

Full-text (2 Sources)

Available from
Nov 6, 2014