Toxicity and clearance of intratracheally administered multiwalled carbon nanotubes from murine lung.

Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, Korea.
Journal of Toxicology and Environmental Health Part A (Impact Factor: 1.83). 11/2010; 73(21-22):1530-43. DOI: 10.1080/15287394.2010.511578
Source: PubMed

ABSTRACT Carbon nanotubes (CNT) are known to have widespread industrial applications; however, several reports indicated that these compounds may be associated with adverse effects in humans. In this study, multiwalled carbon nanotubes were administered to murine lungs intratracheally to determine whether acute and chronic pulmonary toxicity occurred. In particular, pristine multiwalled carbon nanotubes (PMWCNT) and acid-treated multiwalled carbon nanotubes (TMWCNT) were used in this study. In broncheoalveolar lavage fluid (BALF) cell analysis, PMWCNT induced more severe acute inflammatory cell recruitment than TMWCNT. Histopathologically, both PMWCNT and TMWCNT induced multifocal inflammatory granulomas in a dose-dependent manner. The observed granulomas were reversible, with TMWCNT-induced granulomas diminishing faster than PMWCNT-induced granulomas. Although the area of granuloma reduced with time, hyperplasia and dysplastic characteristics such as mitotic figures, anisokaryosis, and anisocytosis were still observed. These findings demonstrate that MWCNT induces granulomatous inflammation, and the duration and pattern of inflammation seem to vary depending upon the types of MWCNT to which mice are exposed. Therefore, toxicity studies on various types of CNT are needed as the responsiveness to these compounds differs.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to evaluate in vitro (human bronchial epithelial cells, BEAS2B cells) and in vivo (the nematode Caenorhabditis elegans, C. elegans) toxicity outcomes following exposure to pristine as well as surface-functionalized multiwalled carbon nanotubes (MWCNT) following hydroxylation-oxygenation (O(+)), amination (NH2), or carboxylation (COOH) of the carbon nanotubes (CNT). Cell viability and proliferation were measured by Ez-Cytox, trypan blue exclusion, and colony formation assays. The genotoxic potential of the MWCNT was determined by using the alkaline comet assay. In addition, survival and reproduction were used as endpoints for detection of toxicity of MWCNT in C. elegans. The carboxylated (COOH)-MWCNT was found most toxic as evidenced by cytotoxic and genotoxic among all tested compounds. The order of sensitivity was COOH > O(+) > NH2 > pristine. There were almost no marked changes in survival following exposure of C. elegans to MWCNT. It is of interest that only pristine MWCNT exerted significant reduction in reproductive capacity of C. elegans. Surface functionalization significantly influenced the bioactivity of MWCNT, which displayed species as well as target-organ specificity. The mechanisms underlying these specific modes of nano-biological interactions need to be elucidated.
    Journal of Toxicology and Environmental Health Part A 10/2014; 77(22-24):1399-408. DOI:10.1080/15287394.2014.951756 · 1.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Aggregates of multiwalled carbon nanotubes (MWCNT) impair the barrier properties of human airway cell monolayers. To resolve the mechanism of the barrier alteration, monolayers of Calu-3 human airway epithelial cells were exposed to aggregated MWCNT. At the cell-population level, trans-epithelial electrical resistance (TEER) was used as an indicator of barrier competence, caspase activity was assessed with standard biochemical assays, and cell viability was investigated by biochemical techniques and high-throughput screening (HTS) technique based on automated epifluorescence microscopy. At cell level, the response to MWCNT was investigated with confocal microscopy, by evaluating cell death (calcein/propidium iodide (PI)), proliferation (Ki-67), and apoptosis (caspase activity). At the cell-population level, exposure to aggregated MWCNT caused a decrease in TEER, which was not associated with a decrease in cell viability or onset of apoptosis even after an 8-d exposure. In contrast, confocal imaging demonstrated contact with MWCNT aggregates triggered cell death after 24 h of exposure. In the presence of a natural surfactant, both TEER decrease and contact-mediated toxicity were mitigated. With confocal imaging, increased proliferation and apoptosis were detected in Calu-3 cells next to the aggregates. Contact-mediated cytotoxicity was recorded in two additional cell lines (BEAS-2B and A549) derived from human airways. Similar results were confirmed by adopting two additional MWCNT preparations with different physico-chemical features. This indicates MWCNT caused localized damage to airway epithelial monolayers in vitro and altered the apoptotic and proliferative rate of epithelial cells in close proximity to the aggregates. These findings provide evidence on the pathway by which MWCNT aggregates impair airway barrier function, and support the use of imaging techniques as a possible regulatory-decision supporting tool to identify effects of aggregated nanomaterials not readily detected at cell population level.
    Nanotoxicology 05/2014; 9(2):1-12. DOI:10.3109/17435390.2014.918203 · 7.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nanotechnology involves technology, science, and engineering in dimensions less than 100 nm. A virtually infinite number of potential nanoscale products can be produced from many different molecules and their combinations. The exponentially increasing number of nanoscale products will solve critical needs in engineering, science, and medicine. However, the virtually infinite number of potential nanotechnology products is a challenge for toxicologic pathologists. Because of their size, nanoparticulates can have therapeutic and toxic effects distinct from micron-sized particulates of the same composition. In the nanoscale, distinct intercellular and intracellular translocation pathways may provide a different distribution than that obtained by micron-sized particulates. Nanoparticulates interact with subcellular structures including microtubules, actin filaments, centrosomes, and chromatin; interactions that may be facilitated in the nanoscale. Features that distinguish nanoparticulates from fine particulates include increased surface area per unit mass and quantum effects. In addition, some nanotechnology products, including the fullerenes, have a novel and reactive surface. Augmented microscopic procedures including enhanced dark-field imaging, immunofluorescence, field-emission scanning electron microscopy, transmission electron microscopy, and confocal microscopy are useful when evaluating nanoparticulate toxicologic pathology. Thus, the pathology assessment is facilitated by understanding the unique features at the nanoscale and the tools that can assist in evaluating nanotoxicology studies.
    Toxicologic Pathology 02/2013; DOI:10.1177/0192623312467403 · 1.92 Impact Factor